
Anne Baanen
Alexander Bentkamp
Jasmin Blanchette
Johannes Hölzl
Jannis Limperg

The Hitchhiker’s Guide to
Logical Verification

2023 Standard Edition
(August 22, 2023)

lean-forward.github.io/
hitchhikers-guide/2023

https://lean-forward.github.io/hitchhikers-guide/2023
https://lean-forward.github.io/hitchhikers-guide/2023


ii

Copyright © 2018–2023 Anne Baanen, Alexander Bentkamp, Jasmin Blanchette,
Johannes Hölzl, and Jannis Limperg. All rights reserved.



Contents

Contents iii

Preface vii

I Basics 1

1 Types and Terms 3
1.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Type Checking and Type Inference . . . . . . . . . . . . . . . . . . . . . 6
1.4 Type Inhabitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Summary of New Lean Constructs . . . . . . . . . . . . . . . . . . . . . 9

2 Programs and Theorems 11
2.1 Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Function Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Theorem Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Summary of New Lean Constructs . . . . . . . . . . . . . . . . . . . . . 21

3 Backward Proofs 23
3.1 Tactic Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Basic Tactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Reasoning about Connectives and Quantifiers . . . . . . . . . . . . . . 27
3.4 Reasoning about Equality . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Rewriting Tactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Proofs by Mathematical Induction . . . . . . . . . . . . . . . . . . . . . 32
3.7 Induction Tactic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8 Cleanup Tactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.9 Summary of New Lean Constructs . . . . . . . . . . . . . . . . . . . . . 35

4 Forward Proofs 37
4.1 Structured Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Structured Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Forward Reasoning about Connectives and Quantifiers . . . . . . . . 41
4.4 Calculational Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Forward Reasoning with Tactics . . . . . . . . . . . . . . . . . . . . . . 44
4.6 Dependent Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.7 The PAT Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

iii



4.8 Induction by Pattern Matching and Recursion . . . . . . . . . . . . . . 49
4.9 Summary of New Lean Constructs . . . . . . . . . . . . . . . . . . . . . 51

II Functional–Logic Programming 53

5 Functional Programming 55
5.1 Inductive Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Structural Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Structural Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 Pattern Matching Expressions . . . . . . . . . . . . . . . . . . . . . . . 59
5.5 Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.6 Type Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.7 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.8 Binary Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.9 Cases Tactic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.10 Dependent Inductive Types . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.11 Summary of New Lean Constructs . . . . . . . . . . . . . . . . . . . . . 74

6 Inductive Predicates 75
6.1 Introductory Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Logical Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3 Rule Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4 Linear Arithmetic Tactic . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.5 Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.6 Further Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.7 Induction Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.8 Summary of New Lean Constructs . . . . . . . . . . . . . . . . . . . . . 93

7 Effectful Programming 95
7.1 Introductory Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2 Two Operations and Three Laws . . . . . . . . . . . . . . . . . . . . . . 97
7.3 A Type Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.4 No Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.5 Basic Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.6 Mutable State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.7 Nondeterminism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.8 Aesop Tactic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.9 A Generic Algorithm: Iteration over a List . . . . . . . . . . . . . . . . . 106
7.10 Summary of New Lean Constructs . . . . . . . . . . . . . . . . . . . . . 107

8 Metaprogramming 109
8.1 Tactic Combinators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.2 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.3 The Metaprogramming Monads . . . . . . . . . . . . . . . . . . . . . . . 113
8.4 First Example: An Assumption Tactic . . . . . . . . . . . . . . . . . . . . 114
8.5 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.6 Second Example: A Conjunction-Destructing Tactic . . . . . . . . . . . 117
8.7 Third Example: A Direct Proof Finder . . . . . . . . . . . . . . . . . . . 119

iv



8.8 Miscellaneous Tactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.9 Summary of New Lean Constructs . . . . . . . . . . . . . . . . . . . . . 123

III Program Semantics 125

9 Operational Semantics 127
9.1 Formal Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
9.2 A Minimalistic Imperative Language . . . . . . . . . . . . . . . . . . . . 128
9.3 Big-Step Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.4 Properties of the Big-Step Semantics . . . . . . . . . . . . . . . . . . . 131
9.5 Small-Step Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
9.6 Properties of the Small-Step Semantics . . . . . . . . . . . . . . . . . 135

10 Hoare Logic 137
10.1 Hoare Triples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
10.2 Hoare Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
10.3 A Semantic Approach to Hoare Logic . . . . . . . . . . . . . . . . . . . 140
10.4 First Program: Exchanging Two Variables . . . . . . . . . . . . . . . . . 142
10.5 Second Program: Adding Two Numbers . . . . . . . . . . . . . . . . . . 143
10.6 A Verification Condition Generator . . . . . . . . . . . . . . . . . . . . . 144
10.7 Second Program Revisited: Adding Two Numbers . . . . . . . . . . . . 146
10.8 Hoare Triples for Total Correctness . . . . . . . . . . . . . . . . . . . . 147

11 Denotational Semantics 149
11.1 Compositionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
11.2 A Relational Denotational Semantics . . . . . . . . . . . . . . . . . . . 150
11.3 Fixpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
11.4 Monotone Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
11.5 Complete Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
11.6 Least Fixpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
11.7 A Relational Denotational Semantics, Continued . . . . . . . . . . . . 154
11.8 Application to Program Equivalence . . . . . . . . . . . . . . . . . . . . 154
11.9 A Simpler Approach Based on an Inductive Predicate . . . . . . . . . 156

IV Mathematics 157

12 Logical Foundations of Mathematics 159
12.1 Universes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
12.2 The Peculiarities of Prop . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
12.3 The Axiom of Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
12.4 Subtypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
12.5 Quotient Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
12.6 Summary of New Lean Constructs . . . . . . . . . . . . . . . . . . . . . 172

13 Basic Mathematical Structures 175
13.1 Type Classes over a Single Binary Operator . . . . . . . . . . . . . . . 175
13.2 Type Classes over Two Binary Operators . . . . . . . . . . . . . . . . . 178
13.3 Coercions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

v



13.4 Normalization Tactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
13.5 Lists, Multisets, and Finite Sets . . . . . . . . . . . . . . . . . . . . . . . 182
13.6 Order Type Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
13.7 Decision Tactic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

14 Rational and Real Numbers 187
14.1 Rational Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
14.2 Real Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
14.3 Final Exhortation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
14.4 Summary of New Lean Constructs . . . . . . . . . . . . . . . . . . . . . 195

Bibliography 197

vi



Preface

Formal proof assistants are software tools designed to help their users carry out
computer-checked proofs in a logical calculus. We usually call them proof as-
sistants, or interactive theorem provers, but a mischievous student coined the
phrase “proof-preventing beasts,” and dictation software occasionally misunder-
stands “theorem prover” as “fear improver.” Consider yourself warned.

Rigorous and Formal Proofs Interactive theorem proving has its own terminol-
ogy, already starting with the notion of “proof.” A formal proof is a logical argu-
ment expressed in a logical formalism. In this context, “formal” means “logical” or
“logic-based.” Logicians—the mathematicians of logics—carried out formal proofs
on paper decades before the advent of computers, but nowadays formal proofs
are almost always carried out using a proof assistant.

In contrast, an informal proof is what a mathematician would normally call a
proof. These are often carried out in LATEX or on a blackboard, and are also called
“pen-and-paper proofs.” The level of detail can vary a lot, and phrases such as “it
is obvious that,” “clearly,” and “without loss of generality” move some of the proof
burden onto the reader. A rigorous proof is a very detailed informal proof.

The main strength of proof assistants is that they help develop highly trustwor-
thy, unambiguous proofs of mathematical statements, using a precise logic. They
can be used to prove arbitrarily advanced results, and not only toy examples or
logic puzzles. Formal proofs also help students understand what constitutes a
valid definition or a valid proof. To quote Scott Aaronson:1

I still remember having to grade hundreds of exams where the students
started out by assuming what had to be proved, or filled page after
page with gibberish in the hope that, somewhere in the mess, they
might accidentally have said something correct.

When we develop a new theory, formal proofs can help us explore it. They
are useful when we generalize, refactor, or otherwise modify an existing proof,
in much the same way as a compiler helps us develop correct programs. They
offer a high level of trustworthiness, making it easier for others to review them.
In addition, formal proofs can form the basis of verified computational tools (e.g.,
verified computer algebra systems).

Success Stories There have been a number of success stories in mathematics
and computer science. Some landmark results in the formalization of mathemat-
ics have been the proof of the four-color theorem by Gonthier et al. [6], the proof

1https://www.scottaaronson.com/teaching.pdf
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of the odd-order theorem by Gonthier et al. [7], the proof of the Kepler conjecture
by Hales et al. [10], and the definition of perfectoid spaces by Buzzard et al. [4]. The
earliest work in this area was carried out by Nicolaas de Bruijn and his colleagues
starting in the 1960s in a system called AUTOMATH.2

Today, few mathematicians use proof assistants, but this is slowly changing.
For example, 29 participants of the Lean Together 2019 meeting in Amsterdam,3
about formalization of mathematics, self-identified as mathematicians.

Most users of proof assistants today are computer scientists. A few companies,
including AMD [28] and Intel [11], have been using proof assistants to verify their
designs. In academia, some of the milestones are the verifications of the operat-
ing system kernels seL4 [14] and CertiKOS [9] and the development of the verified
compilers CompCert [17], JinjaThreads [20], and CakeML [16].

Proof Assistants There are dozens of proof assistants in development or use
across the world. A list of the main ones follows, classified by logical foundations:

set theory: Isabelle/ZF, Metamath, Mizar;
simple type theory: HOL4, HOL Light, Isabelle/HOL;
dependent type theory: Agda, Coq, Lean, Matita, PVS;
Lisp-like first-order logic: ACL2.

For a history of proof assistants and interactive theorem proving, we refer to
Harrison, Urban, and Wiedijk’s highly informative chapter [12].

Lean Lean is a proof assistant developed primarily by Leonardo de Moura (Mi-
crosoft Research) since 2012. Its mathematical library, mathlib, was originally de-
veloped under the leadership of Jeremy Avigad (Carnegie Mellon University) but
is now maintained and further extended by the user community [21].4

We will use Lean version 4.0.0-nightly-2023-08-19, mathlib revision 368923-
da0362e039, and a few extensions collected in a small library called LoVelib.5
Although it is a research project, with some rough edges, there are several reasons
why Lean is a suitable vehicle to teach interactive theorem proving:

It has a highly expressive, and highly interesting, logic based on the calculus
of inductive constructions, a dependent type theory.
It is extended with classical axioms and quotient types, making it convenient
to verify mathematics.
It includes a convenient metaprogramming framework, which can be used
to program custom proof automation.
It includes a modern user interface via a Visual Studio Code plugin.
It has highly readable, fairly complete documentation.
It is open source.

2https://www.win.tue.nl/automath/
3https://lean-forward.github.io/lean-together/2019/index.html
4https://github.com/leanprover-community/mathlib4
5https://github.com/blanchette/logical_verification_2023/raw/main/lean/LoVelib.
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Lean’s core library includes only basic algebraic definitions. More setup and
definitions are found in mathlib. Despite its name, mathlib is more than a math-
ematical library; it provides a lot of basic automation on top of Lean’s core library
that one would expect from a modern proof assistant.

This Guide This guide was originally designed as a companion to the MSc-level
course Logical Verification (LoVe) taught at the Vrije Universiteit Amsterdam. Our
primary aim is to teach interactive theorem proving. Lean is the vehicle, not an
end of itself. As such, this guide is not designed to be a comprehensive Lean
tutorial—for this, we recommend Theorem Proving in Lean 4 [13]. The guide is also
no substitute for doing the exercises and homework. Theorem proving is not for
spectators; it can only be learned by doing.

Specifically, our goal is that you
learn fundamental theory and techniques in interactive theorem proving;
learn how to use logic as a precise language for modeling systems and stat-
ing properties about them;
familiarize yourselves with some areas in which proof assistants are success-
fully applied, such as functional programming, the semantics of imperative
programming languages, and mathematics;
develop some practical skills you can apply on a larger project (as a hobby,
for an MSc or PhD, or in industry);
reach a point where you feel ready to move to another proof assistant and
apply what you have learned;
get to understand the domain well enough to start reading relevant scientific
papers published at international conferences such as Certified Programs
and Proofs (CPP) and Interactive Theorem Proving (ITP) or in journals such
as the Journal of Automated Reasoning (JAR).

Equipped with a good knowledge of Lean, you will find it easy to move to an-
other proof assistant based on dependent type theory, such as Agda or Coq, or to
a system based on simple type theory, such as HOL4 or Isabelle/HOL.

An important characteristic of this guide, which it shares with Knuth’s TEXbook
[15], is that it does not always tell the truth. To simplify the exposition, simple but
false claims are made about Lean. Some of these statements are rectified in later
chapters. Like Knuth, we feel that “this technique of deliberate lying will actually
make it easier for you to learn the ideas. Once you understand a simple but false
rule, it will not be hard to supplement that rule with its exceptions.”

The Lean files accompanying this guide can be found in a public repository.6
The files’ naming scheme follows this guide’s chapters; thus, LoVe07_Effectful-
Programming_Demo.lean is the main file associated with Chapter 7 (“Effectful Pro-
gramming”), reviewed in class, LoVe07_EffectfulProgramming_ExerciseSheet.
lean is the exercise sheet, and LoVe07_EffectfulProgramming_HomeworkSheet.
lean is the homework sheet.

We owe a huge debt to the authors of Theorem Proving in Lean 4 [13] and Con-
crete Semantics: With Isabelle/HOL [23], who have taught us Lean and program-
ming language semantics. Many of their ideas appear in this guide.

6https://github.com/blanchette/logical_verification_2023
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Special Symbols In this guide, we assume that you will be using Visual Studio
Code and its Lean extension to edit .lean files. Visual Studio Code lets you en-
ter Unicode symbols by entering backslash \ followed by an ASCII identifier. For
example, →, ∀, or ∈ can be entered by typing \->, \fo, or \in and pressing the
tab key or the space bar. We will freely use these notations. For reference, we
provide a list of the main non-ASCII symbols that are used in the guide and, for
each, one of its ASCII representations. By hovering over a symbol in Visual Studio
Code while holding the control or command key pressed, you will see the different
ways in which it can be entered.

¬ \not ∧ \and ∨ \or
→ \-> ↔ \<-> ∀ \fo
∃ \ex ≤ \<= ≥ \>=
̸= \neq ≈ \~~ × \x
◦ \circ ∅ \empty ∪ \union
∩ \intersect ∈ \in ⇃ \downleftharpoon
# \bigcirc ← \<- 7→ \mapsto
⇒ \=> ⇒■⇒ \==> J \[[
K \]] α \a β \b
γ \g δ \de ε \e
σ \s 0 \0 1 \1
2 \2 3 \3 4 \4
5 \5 6 \6 7 \7
8 \8 9 \9

x
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Chapter 1

Types and Terms

We start our journey by studying the basics of Lean, starting with terms (also called
expressions) and their types.

Lean’s logical foundation is a rich logic called the calculus of inductive con-
structions, which supports dependent types. Lean’s logic is inspired by the λ-
calculus and resembles typed functional programming languages such as Haskell,
OCaml, and Standard ML. Even if you have not been exposed to these languages,
you will recognize many of the concepts from modern languages (e.g., Python,
C++11, Java 8). In a first approximation:

Lean = functional programming + logic

If your background is in mathematics, you probably already know most of
the key concepts underlying functional programming, sometimes under different
names. For example, the Haskell program

fib 0 = 0
fib 1 = 1
fib n = fib (n - 2) + fib (n - 1)

closely matches the mathematical definition

fib(n) =

0 if n = 0
1 if n = 1
fib(n− 2) + fib(n− 1) if n ≥ 2

In this chapter, we restrict our attention to a fragment without dependent
types, called simple type theory (or higher-order logic)). It corresponds roughly
to the simply typed λ-calculus [3] extended with an equality operator (=). It is an
abstract, extremely simplified version of a programming language with a function-
calling mechanism that prefigures functional programming.

1.1 Types

Types can be basic types such as Z, Q, and Bool or total functions σ→ τ, where
σ and τ are themselves types. Types indicate which values an expression may
evaluate to. They introduce a discipline that is followed somewhat implicitly in
mathematics. In principle, nothing prevents a mathematician from stating 1 ∈ 2,
but a typing discipline would mark this as the error it likely is.

3



4 Chapter 1. Types and Terms

Semantically, types can be viewed as sets. We would normally define the types
Z, Q, and Bool so that they faithfully capture the mathematicians’ Z and Q and
the computer scientists’ Booleans, and similarly for the function arrow (→). But
despite their similarities, Lean and mathematics are distinct languages. Lean’s
types may be interpreted as sets, but they are not sets.

Higher-order types are types containing→ arrows that are nested on the left of
→, as in the type (Z→ Z)→ Q. Values of such types are functions that take other
functions as arguments. Accordingly, (Z→ Z)→ Q is the type of unary functions
that take a function of type Z→ Z as argument and that return a value of type Q.

1.2 Terms

The terms, or expressions, of simple type theory consist of
constants c;
variables x;
applications t u;
anonymous functions fun x 7→ t (also called λ-expressions).

Above, t and u denote arbitrary terms. We can also write t : σ to indicate that the
term t has the type σ.

Let us review the kinds of terms in turn:

A constant c : σ is a symbol of type σ whose meaning is fixed in the current
global context. For example, an arithmetic theory might contain constants
such as 0 : Z, 1 : Z, abs : Z→ N, square : N→ N, and prime : N→ Bool.
Constants include functions (e.g., abs) and predicates (e.g., prime).
A variable x : σ is either bound or free. A bound variable refers back to the in-
put of an anonymous function fun x : σ 7→ t enclosing it. By contrast, a free
variable is declared in the local context—a concept that will be explained
below.
An application t u, where t : σ→ τ and u : σ, is a term of type τ denoting
the result of applying the function t to the argument u. For example, if t
is abs and u is 0, then the application is abs 0. No parentheses are needed
around the argument, unless it is a complex term—e.g., prime (abs 0).
Given a term t : τ, an anonymous function fun x : σ 7→ t denotes the total
function of type σ → τ that maps each input value x of type σ to the body
t, where x may occur in t. Thus, fun x : Z 7→ square (abs x) denotes the
function that maps (the value denoted by) 0 to (the value denoted by) square
(abs 0), that maps 1 to square (abs 1), and so on. The variable x is said to
be bound by fun. Accordingly, fun is called a binder. For mathematicians, a
more familiar syntax would have been x 7→ square (abs x), without the fun
keyword.

Constants and variables look syntactically similar, but they are considered dif-
ferent. Constants are declared globally, whereas variables are introduced locally
by fun or some other binder.

Applications and anonymous functions mirror each other: An anonymous func-
tion “builds” a function; an application “destructs” a function. What happens if we
combine the two? If we apply an argument u of type σ to an anonymous function
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fun x : σ 7→ t[x], where t[x] represents some term that may contain x, then we
obtain the term t[u]. (This is a slightly simplified view. Actually, if t[x] contains
some binders, the bound variables might have to be renamed to avoid capturing
u’s free variables. In Lean, this renaming takes place automatically.) Here are a
few examples of applying an anonymous function:

(fun n : N 7→ n) 4 yields 4
(fun n : N 7→ square (square n)) 5 yields square (square 5)

(fun y : Z 7→ 1) 0 yields 1
(fun x : Z 7→ (fun y : Z 7→ x)) 1 yields fun y : Z 7→ 1

Although our functions are unary (i.e., they take one argument), we can build
n-ary functions by nesting funs, using an ingenious technique called currying. For
example, fun x : σ 7→ (fun y : τ 7→ x) denotes the function of type σ→ (τ→ σ)
that takes two arguments and returns the first one. Strictly speaking, σ→ (τ→ σ)
takes a single argument and returns a function, which in turn takes an argument.
Applications work in the same way: If K := (fun x : Z 7→ (fun y : Z 7→ x)), then
K 1 = (fun y : Z 7→ 1) and (K 1) 0 = 1. The function K in K 1, which is applied to a
single argument, is said to be partially applied, because it can take an additional
argument.

Currying is so useful a concept that we will omit most parentheses, writing

σ→ τ→ υ for σ→ (τ→ υ)
t u v for (t u) v

fun x : σ 7→ fun y : τ 7→ t for fun x : σ 7→ (fun y : τ 7→ t)

and also

fun (x : σ) (y : τ) 7→ t for fun x : σ 7→ fun y : τ 7→ t
fun x y : σ 7→ t for fun (x : σ) (y : σ) 7→ t

Moreover, in an anonymous function fun x : σ 7→ t, we can usually omit the
type annotation : σ, writing

fun x 7→ t for fun x : σ 7→ t

Lean will then try to infer the type based on the body t and on the context sur-
rounding the anonymous function. Type inference lightens notations and saves
some keystrokes.

In mathematics, it is customary to write binary operators in infix syntax (e.g.,
x + y). Such notations are also possible in Lean, as syntactic sugar for curried
function application (e.g., add x y).

One way to work with Lean is to declare the types and constants we need using
the opaque command. Consider the following declarations:

opaque a : Z
opaque b : Z
opaque f : Z → Z
opaque g : Z → Z → Z

#check fun x : Z 7→ g (f (g a x)) (g x b)
#check fun x 7→ g (f (g a x)) (g x b)
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The first four lines declare four constants (a, b, f, g), which can be used to form
terms. The last two lines use the #check command to type-check terms and show
their types. Using traditional mathematical notations, the term on the last line
would be written x 7→ g(f(g(a, x)),g(x,b)). The # prefix identifies diagnosis com-
mands: commands that are useful for debugging but that we would normally not
keep in our Lean files.

1.3 Type Checking and Type Inference

When Lean parses a term, it checks whether the term is well typed. In the process,
it tries to infer the types of bound variables if those are omitted—e.g., the type of
x in fun x 7→ square (square x).

For simple type theory, type checking and type inference are decidable prob-
lems. Advanced features such as overloading (the possibility to reuse the same
name for several constants—e.g., 0 : N and 0 : R) can lead to undecidability [26].
Lean takes a pragmatic, computer-science-oriented approach and assumes that
numerals 0, 1, 2, . . . are of type N if several types are possible.

Lean’s type system can be expressed as a formal system. A formal system
consists of judgments and of derivation rules for producing judgments. A typing
judgment has the form C ⊢ t : σ, meaning that term t has type σ in local context C.
For example, the judgment ⊢ abs : Z→ N states that the constant abs has type
Z→ N in the empty local context.

The local context gives the types of the variables in t that are not bound by
a fun. The local context is used to keep track of the variables bound by binders
outside t. If the same variable x is bound multiple times, the last occurrence
shadows the other ones. For example, the judgment x : Z, y : N ⊢ x : Z states
that the variable x has type Z in the local context x : Z, y : N.

For simple type theory, the typing judgments are produced by four typing rules,
one per kind of term:

Cst if c is globally declared with type σ
C ⊢⊢⊢ c : σ

Var if x : σ is the rightmost occurrence of x in C
C ⊢⊢⊢ x : σ

C ⊢⊢⊢ t : σ→ τ C ⊢⊢⊢ u : σ
App

C ⊢⊢⊢ t u : τ

C, x : σ ⊢⊢⊢ t : τ
Fun

C ⊢⊢⊢ (fun x : σ 7→ t) : σ→ τ

Each rule has zero or more premises (above the horizontal bar), a conclusion
(below the bar), and possibly a side condition (on the right). The premises are
typing judgments, whereas the side conditions are arbitrary mathematical condi-
tions on the mathematical variables occurring in the rule. To show the premises,
we need to continue performing a derivation upward, as we will see in a moment.
As for the side conditions, we can use the entire arsenal of mathematics to show
that they are true.

The first two rules, labeled Cst and Var, have no premises, but they have side
conditions that must be satisfied for the rules to apply. The last two rules take one
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or two judgments as premises and produce a new judgment. Fun is the only rule
that modifies the local context: As we enter the body t of an anonymous function,
we need to record the existence of the bound variable x and its type to be ready
when we meet x in t.

We can use this rule system to prove that a given term is well typed by working
our way backwards (i.e., upwards) and applying the rules, building a formal deriva-
tion of a typing judgment. Like natural trees, derivation trees are drawn with the
root at the bottom. The derived judgment appears at the root, and each branch
ends with the application of a premise-less rule. Rule applications are indicated
by a horizontal bar and a label. The following typing derivation establishes that
the term fun x : Z 7→ abs x has type Z→ N in an arbitrary local context C:

Cst
C, x : Z ⊢⊢⊢ abs : Z→ N

Var
C, x : Z ⊢⊢⊢ x : Z

App
C, x : Z ⊢⊢⊢ abs x : N

Fun
C ⊢⊢⊢ (fun x : Z 7→ abs x) : Z→ N

Reading the proof from the root upwards, notice how the local context is threaded
through and how it is extended by the Fun rule. The rule moves the variable bound
by fun to the local context, making an application of Var possible further up the
tree. If the variable x is already declared in C, it becomes shadowed by x : Z after
entering the fun expression.

In summary, the type system consists of derivation rules that can be (1) instan-
tiated with arbitrary values for their mathematical variables and (2) connected to
form derivation trees.

Here is a second example, this time starting with an empty local context:

Var
x : Z, y : Z : ⊢⊢⊢ x : Z

Fun
x : Z ⊢⊢⊢ (fun y : Z 7→ x) : Z→ Z

Fun
⊢⊢⊢ (fun x : Z 7→ fun y : Z 7→ x) : Z→ Z→ Z

Both examples so far were well typed. If we start with an ill-typed term, or if
we specify the wrong type or context in the judgment at the root of the derivation
tree, we will find that we cannot complete the derivation. A derivation constitutes
a proof that a term is well typed and has the specified type in the given context.

The above type system checks only that terms are well typed. It does not check
that types are well formed. For example, given the unary type constructor List,
List Z (the type of lists of integers) is well formed, whereas Z List and List
List are ill-formed. For simple type theory, well-formedness is easy to check:
Only declared type constructors should be used, and each n-ary type constructor
should be passed exactly n type arguments.

1.4 Type Inhabitation

Given a type σ, the type inhabitation problem consists of finding an “inhabitant”
of that type—a term of type σ—within the empty local context. It may seem like a
pointless exercise, but as we will see in Chapter 4, this problem is closely related



8 Chapter 1. Types and Terms

to that of finding a proof of a proposition. Seemingly silly exercises of the form
“find a term of type σ” are good practice towards mastery of theorem proving.

Although this problem is in general undecidable, with the right strategy we can
go a long way. To create a term of a given type, start with the placeholder _ and
recursively apply a combination of the following two steps:

1. If the type is of the form σ→ τ, a possible inhabitant is an anonymous func-
tion, of the form fun x : σ 7→ _, where _ is a placeholder for a missing term
of type τ. Lean will mark _ as an error; if you hover over it in Visual Studio
Code, a tooltip will show the missing term’s type as well as any variables
declared in the local context.

2. Given a type σ (which may be a function type), you can use any constant c
or variable x of type τ1 → · · · → τn → σ to build a term of type σ. For each
argument, you need to put a placeholder, yielding c _ . . . _ or x _ . . . _.

The placeholders can be eliminated recursively using the same strategy.
As an example, we will apply the strategy to find a term of type

(α→ β→ γ)→ ((β→ α)→ β)→ α→ γ

Initially, only step 1 is applicable, with

σ := α→ β→ γ and τ := ((β→ α)→ β)→ α→ γ

(Recall that → is right-associative: σ→ τ→ υ stands for σ→ (τ→ υ).) This re-
sults in the term fun f 7→ _, which has the right type but has a placeholder left.
Since the argument f has type σ, a function type, it makes sense to use the name
f for it. Then we continue recursively with the placeholder, of type τ. Again, only
step 1 is possible, so we end up with the term fun f g 7→ _, where g has type (β→
α)→ β and the placeholder has type α→ γ. A third application of step 1 yields
fun f g a 7→ _, where a has type α and the placeholder has type γ.

At this point, step 1 no longer applies. Let us see if step 2 is possible. The
context surrounding the placeholder contains the following variables:

f : α→ β→ γ, g : (β→ α)→ β, a : α

Recall that we are trying to build a term of type γ. The only variable we can use
to achieve this is f: It takes two arguments and returns a value of type γ. So
we replace the placeholder with the term f _ _, where the two new placeholders
stand for the two missing arguments. Putting everything together, we now have
the term fun f g a 7→ f _ _.

Following f’s type, the placeholders are of type α and β, respectively. The
first placeholder is easy to fill in, using step 2 again, by simply supplying a, of
type α, with no arguments. For the second placeholder, we apply step 2 with the
variable g, which is the only source of βs. Since g takes an argument, we must
supply a placeholder. This means our current term is fun f g a 7→ f a (g _).

We are almost done. The only placeholder left has type β→ α, which is g’s
argument type. Applying step 1, we replace the placeholder with fun b 7→ _, where
_ has type α. Here, we can simply supply a. Our final term is fun f g a 7→ f a (g
(fun b 7→ a)).

The above derivation was tedious but deterministic: At each point, either step
1 or 2 was applicable, but not both. In general, this will not always be the case.
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For some other types, we might encounter dead ends and need to backtrack. We
might also fail altogether, with nowhere to backtrack to; for example, with an
empty local context, it is impossible to supply a witness for α.

The key idea is that the term should be syntactically correct at all times. The
only red underlining we should see in Visual Studio Code should appear under the
placeholders. In general, a good principle for software development is to start
with a program that compiles, perform the smallest change possible to obtain a
new compiling program, and repeat until the program is complete.

1.5 Summary of New Lean Constructs

At the end of this and most other chapters, we include a brief summary of the con-
structs introduced in the chapter. Some syntaxes have multiple meanings, which
will be introduced gradually. We refer to The Lean 4 Manual [1], the Theorem Prov-
ing in Lean 4 [13] tutorial, and the mathlib documentation1 for details.

Diagnosis Command

#check checks and prints type of a term

Declaration

opaque declares an unspecified new constant or type

1https://leanprover-community.github.io/mathlib4_docs/

https://leanprover-community.github.io/mathlib4_docs/




Chapter 2

Programs and Theorems

We continue our study of the basics of Lean, focusing on programs and theorems,
without carrying out any proofs yet. We review how to define new types and func-
tions and how to state their intended properties as theorems.

2.1 Type Definitions

A distinguishing feature of Lean’s calculus of inductive constructions is its built-in
support for inductive types. An inductive type is a type whose values are built by
applying special constants called constructors. Inductive types are a concise way
of representing acyclic data in a program. You may know them under some other,
largely synonymous names, including algebraic data types, inductive data types,
freely generated data types, recursive data types, and data types.

2.1.1 Definition of Natural Numbers

The “Hello, World!” example of inductive types is the type Nat (= N) of natural
numbers. In Lean, it can be defined as follows:

inductive Nat : Type where
| zero : Nat
| succ : Nat → Nat

The first line announces to the world that we are introducing a new type called
Nat, intended to represent the natural numbers. The second and third line de-
clare two new constructors, Nat.zero : Nat and Nat.succ : Nat→ Nat, that can
be used to build values of type Nat. Following an established convention in com-
puter science and logic, counting starts at zero. The second constructor is what
makes this inductive definition interesting—it requires an argument of type Nat
to produce a value of type Nat. The terms

Nat.zero
Nat.succ Nat.zero

Nat.succ (Nat.succ Nat.zero)
...

denote the different values of type Nat—zero, its successor, its successor’s suc-
cessor, and so on. This notation is called unary—or Peano, after the logician

11
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Giuseppe Peano. For an alternative explanation of Peano numbers in Lean (and
some groovy video game graphics), see Kevin Buzzard’s article “Can computers
prove theorems?”1

The general format of type declarations is

inductive type-name (params1 : type1) . . . (paramsk : typek) : Type
where
| constructor-name1 : constructor-type1...
| constructor-namen : constructor-typen

For the natural numbers, it is possible to convince Lean to use the familiar
names 0, 1, 2, . . . , and indeed the predefinedN type offers such syntactic sugar. But
using the lengthier notations sheds more light on Lean’s type definitions. (Besides,
syntactic sugar is known to cause cancer of the semicolon [25].)

In the Lean file accompanying this chapter, the definition of Nat is located
in a namespace, delimited by namespace MyNat and end MyNat, to keep its effects
contained to a portion of the file. After end MyNat, any occurrence of Nat, Nat.zero
, or Nat.succ will refer to Lean’s predefined type of natural numbers. Similarly,
the entire file is put in the LoVe namespace to prevent name clashes with existing
Lean libraries.

We can inspect an earlier definition at any point in Lean by using the #print
command. For example, #print Nat within the MyNat namespace displays the fol-
lowing information:

inductive LoVe.MyNat.Nat : Type
number of parameters: 0
constructors:
LoVe.MyNat.Nat.zero : Nat
LoVe.MyNat.Nat.succ : Nat → Nat

The focus on natural numbers is one of the many features of this guide that
reveal a bias towards computer science. Number theorists would be more inter-
ested in the integers Z and the rational numbers Q; analysts would want to work
with the real numbers R and the complex numbers C. But the natural numbers are
ubiquitous in computer science and enjoy a very simple definition as an inductive
type. They can also be used to build other types, as we will see in Chapter 12.

2.1.2 Definition of Arithmetic Expressions

If we were to specify a calculator program or a programming language, we would
likely need to define a type to represent arithmetic expressions. The next example
shows how this could be done in Lean:

inductive AExp : Type where
| num : Z → AExp
| var : String → AExp
| add : AExp → AExp → AExp
| sub : AExp → AExp → AExp
| mul : AExp → AExp → AExp

1http://chalkdustmagazine.com/features/can-computers-prove-theorems/

http://chalkdustmagazine.com/features/can-computers-prove-theorems/
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| div : AExp → AExp → AExp

Mathematically, this definition is equivalent to defining the type AExp inductively
by the following formation rules:

1. For every integer i, the term AExp.num i is an AExp value. (Intuitively, the
constructor AExp.num “boxes” an integer into an arithmetic expression.)

2. For every character string x, the term AExp.var x is an AExp value.
3. If e1 and e2 are AExp values, then so are AExp.add e1 e2, AExp.sub e1 e2,

AExp.mul e1 e2, and AExp.div e1 e2.
The above definition is exhaustive. The only possible values for AExp are those
built using formation rules 1 to 3. Moreover, AExp values built using different for-
mation rules are distinct. These two properties of inductive types are captured by
the motto “No junk, no confusion” due to Joseph Goguen.

It may be instructive to compare the concise Lean specification of AExp above
with a Java program that achieves the same. The program consists of one inter-
face and six classes that implement it, corresponding to the AExp type and its six
constructors:

public interface AExp { }

public class Num implements AExp {
public int num;

public Num(int num) { this.num = num; }
}

public class Var implements AExp {
public String var;

public Var(String var) { this.var = var; }
}

public class Add implements AExp {
public AExp left;
public AExp right;

public Add(AExp left, AExp right)
{ this.left = left; this.right = right; }

}

public class Sub implements AExp {
public AExp left;
public AExp right;

public Sub(AExp left, AExp right)
{ this.left = left; this.right = right; }

}

public class Mul implements AExp {
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public AExp left;
public AExp right;

public Mul(AExp left, AExp right)
{ this.left = left; this.right = right; }

}

public class Div implements AExp {
public AExp left;
public AExp right;

public Div(AExp left, AExp right)
{ this.left = left; this.right = right; }

}

In C, the natural counterpart of an inductive type is a tagged union. The type
declarations would be as follows:

#include <stddef.h>
#include <stdlib.h>

enum AExpKind {
AEK_NUM, AEK_VAR, AEK_ADD, AEK_SUB, AEK_MUL, AEK_DIV

};

struct aexp;

struct aexp_num {
int num;

};

struct aexp_var {
char var[1024];

};

struct aexp_binop {
struct aexp *left;
struct aexp *right;

};

struct aexp {
enum AExpKind kind;
union {

struct aexp_num anum;
struct aexp_var avar;
struct aexp_binop abinop;

} data;
};
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Corresponding to each constructor in Lean, we would need to write a function
to allocate an aexp object of the right size in memory. Here is the definition of the
function corresponding to the first constructor, AExp.num:

struct aexp *create_num(int num)
{

struct aexp *res = malloc(offsetof(struct aexp, data) +
sizeof(struct aexp_num));

res->kind = AEK_NUM;
res->data.anum.num = num;
return res;

}

The subtle pointer arithmetic for the malloc call is needed to allocate exactly the
right amount of memory.

2.1.3 Definition of Lists

The next type we consider is that of finite lists:

inductive List (α : Type) where
| nil : List α

| cons : α → List α → List α

The type is polymorphic: It is parameterized by a type α, which we can instantiate
with concrete types. For example, List Z is the type of lists over integers, and List
(List R) is the type of lists of lists of real numbers. The type constructor List
takes a type as argument and returns a type. Like generics in Java and templates
in C++, polymorphism is a mechanism that provides parameterized types.

The following commands display the constructors’ types:

#check List.nil
#check List.cons

The output looks different from what we might expect:

List.nil : List ?m.2396
List.cons : ?m.2397 → List ?m.2397 → List ?m.2397

Even if we try to restrict ourselves to a fragment of Lean’s language, Lean often ex-
poses us to more advanced constructs in the output, such as ?m.2396 and ?m.2397
above. Our advice is to adopt a sporty attitude: Do not worry if you do not always
understand everything the first time. Use your common sense and your imagina-
tion. And, above all, do not hesitate to ask.

Lean’s built-in lists offer syntactic sugar for writing lists:

[] for List.nil
x :: xs for List.cons x xs

[x1, . . ., xn] for x1 :: . . . :: xn :: []

The :: operator, like all other binary operators, binds less tightly than function
application. Thus, f x :: List.reverse ys is parsed as (f x) :: (List.reverse
ys). It is good practice to avoid needless parentheses. They can quickly impair
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readability. In addition, it is important to put spaces around infix operators, to
suggest the right precedence.

Functional programmers often use names such as xs, ys, zs for lists, although l
is also common in Lean. A list contains many elements, so a plural form is natural.
A list of cats might be called cats; a list of list of cats, catss. When a nonempty
list is presented as a head and a tail, we usually write, say, x :: xs or cat :: cats.

2.2 Function Definitions

If all we want is to declare a function, we can use the opaque command (Sec-
tion 1.2). But usually, we want to define the function’s behavior, and for this we
can use the def command. Because Lean’s roots are in functional programming,
functions are defined as mathematical expressions evaluating to a value, not as
an imperative program modifying some state. Accordingly, recursion, rather than
iteration with while or for, is the primary mechanism to traverse data.

2.2.1 Recursion on Natural Numbers

Let us see on a simple example how recursion works. The Lean definition of Fi-
bonacci numbers is as follows:

def fib : N → N
| 0 => 0
| 1 => 1
| n + 2 => fib (n + 1) + fib n

The patterns on the left correspond to the argument of the function. Here, fib is
declared with a single argument of typeN, so we pattern-match on a single natural
number. A pattern is triggered when the input has the given form. For example,
if the input is 1, then the pattern 1 matches it, and the corresponding right-hand
side is evaluated. If the input is 5, then the pattern n + 2 is triggered, with n := 3.
Then the right-hand side is evaluated with n set to 3, yielding fib 4 + fib 3.

The general format of recursive definitions is

def name (params1 : type1) . . . (paramsm : typem) : type
| patterns1 => result1

...
| patternsn => resultn

The parameters params1 to paramsm cannot be subjected to pattern matching, only
the remaining arguments declared in type. If multiple patterns are provided on
one line, they are separated by commas. Patterns may contain variables, which
are then visible in the corresponding right-hand side, as well as constructors.

The basic arithmetic operations on natural numbers, such as addition, multi-
plication, and exponentiation, can be defined by recursion. Of course, they are
already defined in Lean (as +, *, and ^), but they are useful exercises. We start
with addition:

def add : N → N → N
| m, Nat.zero => m
| m, Nat.succ n => Nat.succ (add m n)
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We pattern-match on two arguments at the same time, distinguishing the case
where the second argument is zero and the case where it is nonzero. Each recur-
sive call to add peels off one Nat.succ constructor from the second argument.
Instead of Nat.zero and Nat.succ n, Lean also allows us to write 0 and n + 1 as
syntactic sugar.

We can evaluate the result of applying add to numbers using #eval or #reduce:

#eval add 2 7
#reduce add 2 7

Both commands print 9, as expected (at least in Visual Studio Code). #eval em-
ploys an optimized interpreter, whereas #reduce uses Lean’s inference kernel,
which is less efficient.

It is good practice to provide a few tests each time we define a function, to
ensure that it behaves as expected. You can even leave the #eval or #reduce
calls in your Lean files as documentation.

The definition of multiplication is similar to that of addition:

def mul : N → N → N
| _, Nat.zero => Nat.zero
| m, Nat.succ n => add m (mul m n)

The underscore (_) stands for an unused variable. We could have put a name (e.g.,
m), but _ documents our intentions better.

The #eval command below prints 14, as expected:

#eval mul 2 7

Exponentiation (“m to the power of n”) can be defined in various ways. Our
first proposal is structurally identical to the definition of multiplication:

def power : N → N → N
| _, Nat.zero => 1
| m, Nat.succ n => mul m (power m n)

Since the first argument, m, remains unchanged in the recursive call, power m n, we
can factor it out and put it next to the function’s name, as a parameter, before the
colon introducing the type of the function (excluding the parameter m):

def powerParam (m : N) : N → N
| Nat.zero => 1
| Nat.succ n => mul m (powerParam m n)

From the outside, there is no difference between the two definitions. In fact, we al-
ready saw this syntax for the type argument α of the List constructor (Section 2.1).

Yet another definition is possible by first introducing a general-purpose itera-
tor and then using it with the right arguments:

def iter (α : Type) (z : α) (f : α → α) : N → α

| Nat.zero => z
| Nat.succ n => f (iter α z f n)

def powerIter (m n : N) : N :=
iter N 1 (mul m) n
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The iter function takes a type α, a “zero” value z, a unary function f, and a
natural number n, and computes

f (f (· · · (f︸ ︷︷ ︸
n times

z) · · · ))

It is an example of a higher-order function: A function that takes another function
(here, f) as argument. In functional programming, functions are treated like any
other objects and can be used as arguments or as the result of a function. Here,
we use iter to compute m to the power of n as

mul m (mul m (· · · (mul m︸ ︷︷ ︸
n times

1) · · · ))

Finally, notice that the definition of powerIter is not recursive. For nonrecur-
sive functions without pattern matching, the syntax is simply

def name (params1 : type1) . . . (paramsm : typem) : type :=
result

2.2.2 Recursion on Arithmetic Expressions

Going back to the type of arithmetic expressions, if we wanted to implement an
eval function in Java, we would probably add it as part of AExp’s interface and
implement it in each subclass. For Add, Sub, Mul, and Div, we would recursively
call eval on the left and right objects.

In Lean, the syntax is very compact. We define a single function and use pattern
matching to distinguish the six cases:

def eval (env : String → Z) : AExp → Z
| AExp.num i => i
| AExp.var x => env x
| AExp.add e1 e2 => eval env e1 + eval env e2
| AExp.sub e1 e2 => eval env e1 - eval env e2
| AExp.mul e1 e2 => eval env e1 * eval env e2
| AExp.div e1 e2 => eval env e1 / eval env e2

Notice that this function is higher-order: It takes a function, env, that represents
an “environment” assigning values to the variables. The environment is used in
the AExp.var case to evaluate a variable and is threaded through in the recursive
cases (AExp.add, AExp.sub, AExp.mul, and AExp.div).

Perhaps you are worried about division by zero in the AExp.div case. Let us
see what #eval has to say about it, using some environment that assigns 7 to all
variables:

#eval eval (fun x 7→ 7) (AExp.div (AExp.var "y") (AExp.num 0))

The output is 0. In Lean, division is conveniently defined as a total function that
returns zero when the denominator is zero. For a lucid explanation of why this is
not dangerous, see Buzzard’s blog.2

2https://xenaproject.wordpress.com/2020/07/05/division-by-zero-in-type-theory-a-
faq/

https://xenaproject.wordpress.com/2020/07/05/division-by-zero-in-type-theory-a-faq/
https://xenaproject.wordpress.com/2020/07/05/division-by-zero-in-type-theory-a-faq/
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2.2.3 Recursion on Lists

Recursive functions on lists can be defined in a similar way:

def append (α : Type) : List α → List α → List α

| List.nil, ys => ys
| List.cons x xs, ys => List.cons x (append α xs ys)

The append function takes three arguments: a type α and two lists of type List α.

#eval append N [3, 1] [4, 1, 5]
#eval append _ [3, 1] [4, 1, 5]

By passing the placeholder _, we leave it to Lean to infer the type N from the type
of the other two arguments.

To make the type argument α implicit, we can put it in curly braces { }:

def appendImplicit {α : Type} : List α → List α → List α

| List.nil, ys => ys
| List.cons x xs, ys => List.cons x (appendImplicit xs ys)

#eval appendImplicit [3, 1] [4, 1, 5]

The at sign (@) can be used to make the implicit arguments explicit. This is occa-
sionally necessary to guide Lean’s parser.

We can use syntactic sugar in the definition, both in the patterns on the left-
hand sides of => and in the right-hand sides:

def appendPretty {α : Type} : List α → List α → List α

| [], ys => ys
| x :: xs, ys => x :: appendPretty xs ys

In Lean’s standard library, the append function is an infix operator called ++.
We can use it to define a function that reverses a list:

def reverse {α : Type} : List α → List α

| [] => []
| x :: xs => reverse xs ++ [x]

2.3 Theorem Statements

What makes Lean a proof assistant and not only a programming language is that
we can state theorems about the types and constants we define and prove that
they hold. In interactive theorem proving, the terms theorem, lemma, corollary,
fact, property, and true statement are used more or less interchangeably. Simi-
larly, propositions, logical formulas, and statements will all mean the same.

In Lean, propositions are simply terms of type Prop. This stands in contrast
with first-order logic, where terms and formulas are traditionally distinguished
in the syntax. A proposition that can be proved is called a theorem (or lemma,
corollary, etc.); otherwise it is a nontheorem or false statement. Mathematicians
sometimes use the term “proposition” as a synonym for theorem (e.g., “Proposi-
tion 3.14”), but in formal logic propositions can also be false.

Here are examples of true statements that can be made about the addition,
multiplication, and list reversal operations defined in Section 2.2:
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theorem add_comm (m n : N) :
add m n = add n m :=
sorry

theorem add_assoc (l m n : N) :
add (add l m) n = add l (add m n) :=
sorry

theorem mul_comm (m n : N) :
mul m n = mul n m :=
sorry

theorem mul_assoc (l m n : N) :
mul (mul l m) n = mul l (mul m n) :=
sorry

theorem mul_add (l m n : N) :
mul l (add m n) = add (mul l m) (mul l n) :=
sorry

theorem reverse_reverse {α : Type} (xs : List α) :
reverse (reverse xs) = xs :=
sorry

The general format is

theorem name (params1 : type1) . . . (paramsm : typem) :
statement :=
proof

The := symbol separates the theorem’s statement and its proof. The syntax of
theorem is very similar to that of a def command without pattern matching, with
statement instead of type and proof instead of result. In the examples above,
we put the marker sorry as a placeholder for the actual proof. The marker is quite
literally an apology to future readers and to Lean for the absence of a proof. It is
also a reason to worry, until we manage to eliminate it. In Chapters 3 and 4, we
will see how to achieve this.

The intuitive semantic of a theorem command with a sorry proof is, “This
proposition should be provable, but I have not carried out the proof yet—sorry.”
Sometimes, we want to express a related idea, namely, “Let us assume this propo-
sition holds.” Lean provides the axiom command for this, which is often used in
conjunction with opaque. For example:

opaque a : Z
opaque b : Z

axiom a_less_b :
a < b

After the opaque commands, we have no information about a and b beyond their
type. The axiom specifies the desired property about them. The general format
of the command is



2.4. Summary of New Lean Constructs 21

axiom name (params1 : type1) . . . (paramsm : typem) :
statement

Axioms are dangerous, because they can lead to an inconsistent logic, in which
we can derive False. For example, if we added a second axiom stating that a =
b, we could easily derive b < b, from which we could derive False. The history
of interactive theorem proving is paved with inconsistent axioms. An anecdote
among many: At the 2020 edition of the Certified Programs and Proofs conference,
a submitted paper was rejected due to a flawed axiom, from which one of the peer
reviewers derived False.3 Therefore, we will generally avoid axioms.

From Lean’s point of view, a theorem with a sorry proof is effectively an axiom
and can be used to play havoc with the logic’s consistency. To prevent misunder-
standings, it is better to use sorry only as a temporary measure, while developing
a proof, and not as an alternative to the more explicit, and honest, axiom.

2.4 Summary of New Lean Constructs

Diagnosis Commands

#eval executes a term using an optimized interpreter
#print prints the definition of a constant
#reduce executes a term using Lean’s inference kernel

Declarations

axiom states an axiom
def defines a new constant
inductive introduces a type and its constructors
namespace . . . end collects declarations in a named scope
theorem states a theorem and its proof

Proof Commands

sorry stands for a missing proof or definition

3One of the authors of that submission reported that the axiom has now been revised and
derived as a theorem. The entire formal development is now axiom-free. The revised paper has
been accepted at the conference Computer Aided Verification 2020 [8].





Chapter 3

Backward Proofs

In this chapter, we see how to prove Lean theorems using tactics, and we review
the most important Lean tactics. A tactic is a procedure that operates on the goal—
the proposition to prove—and either fully proves it or produces new subgoals (or
fails). When we state a theorem, the theorem statement is the initial goal. A
proof is complete once all (sub)goals have been eliminated using suitable tactics.
Most of the tactics described here are documented in more detail in Chapter 5 of
Theorem Proving in Lean 4 [13].

Tactics are a backward proof mechanism. They start from the goal and work
backwards towards the already proved theorems. Consider the theorems a, a→ b,
and b→ c and the goal ⊢ c. An informal backward proof is as follows:

To prove c, by b→ c it suffices to prove b.
To prove b, by a→ b it suffices to prove a.
To prove a, we use a. ⊓⊔

The telltale sign of a backward proof is the phrase “it suffices to.” Notice how we
progress from one goal to another (⊢ c, ⊢ b, ⊢ a) until no goal is left to prove.
By contrast, a forward proof would start from the theorem a and progress, one
theorem at a time, towards the desired theorem c:

From a and a→ b, we have b.
From b and b→ c, we have c, as desired. ⊓⊔

A forward proof only manipulates theorems, not goals. We will study forward
proofs more deeply in Chapter 4.

Informal proofs are sometimes written in a mixture of both styles. This is man-
ageable as long as the backward steps are clearly identified, by such wording as
“to prove . . . , it suffices to prove . . . .” It may help to put the ⊢ sign next to goals
as a reminder that these claims have not been proved yet.

Another format for expressing proofs you may be familiar with is natural de-
duction. A natural deduction derivation corresponding to the above proof is given
below:

⊢⊢⊢ b→ c

⊢⊢⊢ a→ b ⊢⊢⊢ a
→E

⊢⊢⊢ b
→E

⊢⊢⊢ c

23
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When read from top to bottom, the derivation corresponds to a forward proof;
when read from bottom to top, it corresponds to a backward proof.

3.1 Tactic Mode

In Chapter 2, whenever a proof was required, we simply put a sorry placeholder.
For a tactical proof, we will now write by to enter tactic mode. In this mode, we
can invoke a sequence of tactics.

Tactics operate on the goal, which consists of the proposition Q that we want to
prove and of a local context C. The local context consists of variable declarations
of the form x : σ and hypotheses of the form h : P. We write C ⊢ Q to denote a
goal, where C is a list of variables and hypotheses and Q is the goal’s target.

To make things more concrete, consider the following Lean example:

theorem fst_of_two_props :
∀a b : Prop, a → b → a :=
by

intro a b
intro ha hb
apply ha

Note that the implication arrow→ is right-associative; this means that a→ b→ a
is the same as a→ (b→ a). Intuitively speaking, the statement has the meaning
“a implies that b implies a,” or equivalently “a and b imply a.”

Initially, the goal is simply the theorem statement:

⊢⊢⊢ ∀a b : Prop, a→ b→ a

The by keyword indicates that we enter tactic mode, in which we can specify a
proof by means of tactics. The tactics then follow, one per line and with the same
indentation for all.

The intro a b tactic tells Lean to fix two free variables, a and b, corresponding
to the two bound variables of the same names. The tactic mimics how mathemati-
cians work on paper: To prove a ∀-quantified proposition, it suffices to prove it
for some arbitrary but fixed value of the bound variable. The goal becomes

a b : Prop ⊢⊢⊢ a→ b→ a

We often use the same names for the free variables as for bound variables, as we
did here, but this is not mandatory. In general, it is good practice to use unique
names and avoid shadowing existing variables.

The intro ha hb tactic tells Lean to move the assumptions a and b to the local
context and to call these hypotheses ha and hb. Indeed, to prove an implication,
it suffices to take its left-hand side as hypothesis and prove its right-hand side.
The goal becomes

a b : Prop, ha : a, hb : b ⊢⊢⊢ a

It is customary to prefix hypothesis names with h.
The apply ha tactic tells Lean to match the hypothesis a, called ha, against the

goal ⊢ a. Since a is syntactically equal to a, we have a match, and this completes
the proof.
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Informally, in a style reminiscent of pen-and-paper mathematics, we could
write the proof as follows:

Let a and b be propositions.
Assume (ha) a and (hb) b are true.
To prove a, we use hypothesis ha. ⊓⊔

(Mathematicians would probably use numeric tags such as (1) and (2) for the hy-
potheses instead of informative names.)

Going back to the Lean proof, we can avoid the intro invocations by declaring
the variables and hypotheses as parameters of the theorem, as follows:

theorem fst_of_two_props_params (a b : Prop) (ha : a) (hb : b) :
a :=
by apply ha

Here is an example with multiple applys in sequence:

theorem prop_comp (a b c : Prop) (hab : a → b) (hbc : b → c) :
a → c :=
by

intro ha
apply hbc
apply hab
apply ha

Putting on our mathematician’s hat, we can verbalize the last proof as follows:

Assume (ha) a is true.
To prove c, by hypothesis hbc it suffices to prove b.
To prove b, by hypothesis hab it suffices to prove a.
To prove a, we use hypothesis ha. ⊓⊔

3.2 Basic Tactics

We already saw the intro and apply tactics. These are the staples of tactical
proofs. Other basic tactics include exact, assumption, rfl, and ac_rfl. These
tactics can go a long way, if we are patient enough to carry out the reasoning
using them, without appealing to stronger proof automation. They can also be
used to solve various logic puzzles.

Below, the thin, large square brackets
[ ]

enclose optional syntax.

intro

intro
[
name1 . . . namen

]
The intro tactic moves the leading ∀-quantified variable or the leading assump-
tion a→ from the goal’s target to the local context. The tactic takes as an optional
argument the name to give to the variable or to the assumption in the context,
overriding the default name. If multiple names are supplied (i.e., n > 1), multiple
variables or assumptions are moved.



26 Chapter 3. Backward Proofs

rfl

The rfl tactic proves goals of the form ⊢ l = r, where the two sides l and r are
syntactically equal up to computation. Computation means first and foremost the
expansion of definitions but also the reduction of an application of an anonymous
function to an argument, and more. These conversions have traditional names.
The main conversions are listed below together with examples, in a global context
containing def double (n : N) : N := n + n:

α-conversion (fun x 7→ f x) = (fun y 7→ f y)
β-conversion (fun x 7→ f x) a = f a
δ-conversion double 5 = 5 + 5
ζ-conversion (let n : N := 2; n + n) = 4
η-conversion (fun x 7→ f x) = f
ι-conversion Prod.fst (a, b) = a

Applying conversions repeatedly as left-to-right rewrite rules is called reduc-
tion; applying a conversion once in reverse is called expansion.

Briefly, to prove ⊢ l = r, the rfl tactic expands definitions in l and r and
performs β-reduction and other reductions. It succeeds if l and r become syntac-
tically identical at some point during this reduction process. Often, rfl succeeds
where a mathematician would say “by definition.”

apply

apply theorem-or-hypothesis

The apply tactic matches the goal’s target with the conclusion of the specified
theorem or hypothesis and adds the theorem or hypothesis’s assumptions as new
goals. The matching is performed up to computation.

We must invoke apply with care, because it can transform a provable goal
into an unprovable subgoal. For example, if the goal is ⊢ True and we apply the
theorem False→ True, the conclusion True is matched against the goal’s target
True, and we end up with the unprovable subgoal ⊢ False. We say that apply is
unsafe. In contrast, intro always preserves provability and is therefore safe.

exact

exact theorem-or-hypothesis

The exact tactic matches the goal’s target with the specified theorem or hypoth-
esis, closing the goal. We can often use apply in such situations, but exact com-
municates our intentions better.

assumption

The assumption tactic finds a hypothesis from the local context that matches the
goal’s target and applys it to prove the goal.
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ac_rfl

The ac_rfl is similar to rfl, but it can be used to reason up to associativity (e.g.,
(a + b) + c = a + (b + c) ) and commutativity (e.g, a + b = b + a). This works for bi-
nary operations that are registered as associative and commutative, such as + and
* on arithmetic types, and ∪ and ∩ on sets. We will see an example in Section 3.6.

sorry

The sorry proof command we encountered in Chapter 2 can be used at any point
in a tactical proof, as a tactic. It “proves” the current goal without actually proving
it. Use with care.

3.3 Reasoning about Connectives and Quantifiers

Before we learn to reason about natural numbers, lists, or other data types, we
must first learn to reason about the logical connectives and quantifiers of Lean’s
logic. Let us start with a simple example: commutativity of conjunction (∧).

theorem And_swap (a b : Prop) :
a ∧ b → b ∧ a :=
by

intro hab
apply And.intro
apply And.right
exact hab
apply And.left
exact hab

At this point, we recommend that you move the cursor over the example in
Visual Studio Code, to see the sequence of proof states. By putting the cursor on
or immediately after each command, you can see the effect of the command on
that line. For the last line, Lean simply reports “Goals accomplished,” meaning
that no subgoals remain to be proved.

The proof is a typical intro–apply–exact mixture. It uses the theorems

And.intro : ?a→ ?b→ ?a ∧ ?b
And.left : ?a ∧ ?b→ ?a

And.right : ?a ∧ ?b→ ?b

where the question marks (?) indicate variables that can be instantiated—for ex-
ample, by matching the goal’s target against the conclusion of a theorem. These
are called metavariables.

The three theorems above are the introduction rule and the two elimination
rules associated with conjunction. An introduction rule for a logical symbol (e.g.,
∧) is a theorem whose conclusion has that symbol as the outermost symbol. Du-
ally, an elimination rule has the symbol in an assumption. For each logical symbol,
the introduction rules tell us how to prove a proposition with that symbol as the
outermost position. By contrast, the elimination rules tell us how we must have
proved such a proposition.
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In the above proof, we apply the introduction rule for ∧ to prove the goal ⊢ b
∧ a, and we apply the two elimination rules to extract b and a from the hypothesis
a ∧ b. It may sound strange that we “eliminate” ∧ in ⊢ b ∧ a by using a so-called
introduction rule. The terminology is backward because our proofs are backward.

Question marks can also arise in goals. They indicate variables that can be
instantiated arbitrarily. In the middle of the proof above, right after the tactic
apply And.right, we have the goal

a b : Prop, hab : a ∧ b ⊢⊢⊢ ?left.a ∧ b

where ?left.a is a metavariable. The tactic exact hab matches ?left.a (in the
target) with a (in hab). Te procedure used to instantiate variables to make two
terms syntactically equal is called unification. Matching is a special case of unifi-
cation where one of the two terms contains no variables, like here.

Incidentally, whenever metavariables appear in goals, additional subgoals will
also appear, with the type of each metavariable as a subgoal (e.g., ⊢ Prop). These
confusing subgoals are merely a reminder that we will have to instantiate the
metavariables with terms of the right type. We can usually ignore these subgoals.
As soon as the metavariable is instantiated (typically when we solve another sub-
goal), its associated subgoal will also go away.

In Lean, unification is performed up to computation. For example, the terms
(fun x 7→ ?m) a and b can be unified by taking ?m := b, because (fun x 7→ b) a and
b are syntactically equal up to β-conversion.

The following is an alternative proof of the theorem And_swap:
theorem And_swap_braces :
∀a b : Prop, a ∧ b → b ∧ a :=
by

intro a b hab
apply And.intro
{ exact And.right hab }
{ exact And.left hab }

The theorem is stated differently, with a and b as ∀-quantified variables instead of
parameters of the theorem. Logically, this is equivalent, but in the proof we must
then introduce a and b in addition to hab.

Another difference is the use of curly braces { }. When we face two or more
goals to prove, it is generally good style to put each proof in its own block en-
closed in curly braces. The { } tactic combinator focuses on the first subgoal; the
tactic inside must prove it. In our example, the apply And.intro tactic creates
two subgoals, ⊢ b and ⊢ a.

A third difference is that we now apply, by juxtaposition, And.right and And.
left directly to the hypothesis a ∧ b to obtain b and a, respectively, instead of
waiting for the theorems’ assumptions to emerge as new subgoals. This is a small
forward step in an otherwise backward proof. The same syntax is used both to
discharge (i.e., prove) a hypothesis and to instantiate a ∀ quantifier. One benefit
of this approach is that we avoid the potentially confusing ?left.a metavariable.

In the next example, we use juxtaposition to instantiate a ∀ quantifier:
theorem f5_if (h : ∀n : N, f n = n) :

f 5 = 5 :=
by exact h 5
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If h is the theorem ∀n, f n = n, then h 5 is the theorem f 5 = 5.
The introduction and elimination rules for disjunction (∨) are as follows:

Or.inl : ∀b : Prop, ?a→ ?a ∨ b
Or.inr : ∀b : Prop, ?a→ b ∨ ?a

Or.elim : ?a ∨ ?b→ (?a→ ?c)→ (?b→ ?c)→ ?c

The ∀ quantifiers in Or.inl (“introduction left”) and Or.inr (“introduction
right”) can be instantiated directly by applying the theorem name to the value
we want to instantiate with, via simple juxtaposition. Thus, Or.intro_left False
corresponds to the theorem ?a→ ?a ∨ False. This is the forward style.

Alternatively, we can invoke apply Or.inl on a goal of the form . . . ⊢ c ∨ d.
This sets ?a := c and ?b := d in the theorem. The new subgoal is . . . ⊢ c. This is
the backward style.

Both Or.inl and Or.inr are unsafe: If you apply the wrong one of the two, or
either of them too early in a proof, you might end up with an unprovable subgoal.
This is easy to see if you consider the provable goal ⊢ True ∨ False: applying
Or.inr yields the unprovable subgoal ⊢ False.

The Or.elim rule may seem counterintuitive at first glance. In essence, it states
that if we have a ∨ b, then to prove an arbitrary c, it suffices to prove c when
a holds and when b holds. You can think of (?a→ ?c)→ (?b→ ?c)→ ?c as a
clever trick to express the concept of disjunction using only implication.

The introduction and elimination rules for equivalence (↔) are as follows:

Iff.intro : (?a→ ?b)→ (?b→ ?a)→ (?a↔ ?b)
Iff.mp : (?a↔ ?b)→ ?a→ ?b

Iff.mpr : (?a↔ ?b)→ ?b→ ?a

The introduction and elimination rules for existential quantification (∃) are

Exists.intro : ∀w, (?P w→ (∃x, ?P x))
Exists.elim : (∃x, ?P x)→ (∀a, ?P a→ ?c)→ ?c

The introduction rule for ∃ can be used to instantiate an existential quantifier
with a witness. For example:

theorem Exists_double_iden :
∃n : N, double n = n :=
by

apply Exists.intro 0
rfl

Again, we instantiate a ∀ quantifier in a forward fashion: Exists.intro 0 is the
theorem ?P 0→ (∃x, ?P x). The rule is unsafe: Choosing the wrong witness for x
will result in an unprovable goal. For example, if the goal is ⊢ ∃n, n > 5 and we
take 3 as the witness, we end up with the unprovable subgoal ⊢ 3 > 5.

The elimination rule for ∃ is reminiscent of that for ∨. Indeed, a fruitful way
to think of a quantification ∃n, ?P n is as a possibly infinitary disjunction ?P 0
∨ ?P 1 ∨ · · · . Similarly, ∀n, ?P n can be thought of as ?P 0 ∧ ?P 1 ∧ · · · .

For truth (True), there is only an introduction rule:

True.intro : True



30 Chapter 3. Backward Proofs

Truth holds no information whatsoever. If it appears as a hypothesis, it is com-
pletely useless, and there is no elimination rule that will succeed at extracting
any information from it. The clear tactic, described in Section 3.8 below, can be
used to remove such useless hypotheses.

Dually, for falsehood (False), there is only an elimination rule:

False.elim : False→ ?a

There is no way to prove falsehood, but if we somehow have it from somewhere
(e.g., from a hypothesis), then we can derive ?anything.

In fact, negation (Not) is defined in terms of implication and falsehood: ¬ a
abbreviates a→ False. Intuitively, these mean the same. We can think of “not a”
as saying that “a would imply something absurd (hence not a).”

Lean’s logic is classical, with support for the law of excluded middle and proof
by contradiction:

Classical.em : ∀a : Prop, a ∨ ¬ a
Classical.byContradiction : (¬ ?a→ False)→ ?a

Implication (→) and universal quantification (∀) are the proverbial dogs that
did not bark. They do not have introduction or elimination rules. Instead, for
both of them, the intro tactic is the introduction principle, and application (as in
the λ-calculus) is the elimination principle. For example, given the theorems hab
: a→ b and ha : a, the application hab ha is a theorem stating b.

For proving logic puzzles involving connectives and quantifiers, we advocate
a “mindless,” “video game” style of reasoning that relies mostly on basic tactics
such as intro and apply. Here are some strategies that often work:

If the goal’s target is an implication P→ Q, invoke intro hP to move P into
your hypotheses: . . ., hP : P ⊢ Q.
If the goal’s target is a universal quantification ∀x : σ, Q, invoke intro x to
move x into the local context: . . ., x : σ ⊢ Q.
Look for a theorem or hypothesis whose conclusion has the same shape as
the goal’s target (possibly containing variables that can be matched), and
apply it. For example, if the goal’s target is Q and you have a theorem or
hypothesis of the form hPQ : P→ Q, try apply hPQ.
A negated goal ⊢ ¬ P is syntactically equal to ⊢ P→ False up to computa-
tion, so you can invoke intro hP to produce the subgoal hP : P ⊢ False. Ex-
panding negation’s definition by invoking rw [Not] (described in Section 3.5)
is often a good strategy.
Sometimes you can make progress by replacing the goal by False, by enter-
ing apply False.elim. As the next step, you would typically apply a theorem
or hypothesis of the form P→ False or ¬ P.
When you face several choices (e.g., between Or.inl and Or.inr), remember
which choices you have made, and backtrack when you reach a dead end or
feel that you are not making any progress.
If you suspect that you might have reached a dead end, check whether the
goal actually is provable under the given assumptions. Even if you started
with a provable theorem statement, the current goal might be unprovable
(e.g., if you used unsafe rules such as Or.inl).
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3.4 Reasoning about Equality

Equality (=) is also a basic logical constant. It is characterized by the following
introduction and elimination rules:

Eq.refl : ∀a, a = a
Eq.symm : ?a = ?b→ ?b = ?a

Eq.trans : ?a = ?b→ ?b = ?c→ ?a = ?c
Eq.subst : ?a = ?b→ ?P ?a→ ?P ?b

The first three theorems are introduction rules specifying that = is an equivalence
relation. The fourth theorem is an elimination rule that allows us to replace equals
for equals in an arbitrary context, represented by the metavariable ?P.

An example will show some of these rules in action. Below, we apply Eq.trans
and Eq.symm to prove a = c using the equations a = b and c = b:

theorem Eq_trans_symm {α : Type} (a b c : α)
(hab : a = b) (hcb : c = b) :

a = c :=
by

apply Eq.trans
{ exact hab }
{ apply Eq.symm

exact hcb }

Since rewriting in this way is such a common operation, Lean provides a rw
tactic to achieve the same result. The tactic will also notice if rfl is applicable:

theorem Eq_trans_symm_rw {α : Type} (a b c : α)
(hab : a = b) (hcb : c = b) :

a = c :=
by

rw [hab]
rw [hcb]

A note on parsing: Equality binds more tightly than the logical connectives.
Thus, a = b ∧ c = d should be read as (a = b) ∧ (c = d).

3.5 Rewriting Tactics

The rewriting tactic rw and its relative simp replace equals for equals. They use
equations as left-to-right rewrite rules, replacing occurrences of the left-hand
side by the right-hand side.

By default, they operate on the goal’s target, but they can also be used to
rewrite hypotheses specified using the at keyword:

at h1 . . . hn rewrites the specified hypotheses
at * rewrites all hypotheses and the target

rw

rw [theorem-or-constant1, . . . , theorem-or-constantn]
[
at position

]
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The rw tactic rewrites the goal using one or more equations as left-to-right rewrite
rules. It searches for the first subterm that matches any of the equations’ left-
hand side; once found, all occurrences of that subterm are replaced by the right-
hand side of the equation. If the equation contains variables, these are instanti-
ated as necessary. To use a theorem in reverse, as a right-to-left rewrite rule, put
a short left arrow (←) in front of the theorem’s name.

Thus, given the theorem hg : ∀x, g x = f x and the goal ⊢ h (f a) (g b) (g c),
the tactic rw [hg] produces the subgoal ⊢ h (f a) (f b) (g c), whereas rw [←hg]
produces the subgoal ⊢ h (g a) (g b) (g c).

Instead of a theorem, we can also specify the name of a constant. This will
attempt to use one of the constant’s defining equations as rewrite rules.

simp

simp
[
at position

]
The simp tactic rewrites the goal using a standard set of rewrite rules, called the
simp set, exhaustively. Each equation in the simp set is used as a left-to-right
rewrite rule. The simp set contains various rules about predefined symbols (e.g.,
arithmetic and list operators) and can be extended by putting the @[simp] at-
tribute on suitable theorems.

simp [theorem-or-constant1, . . . , theorem-or-constantn]
[
at position

]
For the above simp variant, the specified theorems are temporarily added to the
simp set. In the theorem list, an asterisk (*) can be use to represent all hypotheses.
The minus sign (-) in front of a theorem name temporarily removes the theorem
from the simp set. A powerful incantation that both simplifies the hypotheses and
uses the result to simplify the goal’s target is simp [*] at *.

Given the theorem hg : ∀x, g x = f x and the goal ⊢ h (f a) (g b) (g c), the
tactic simp [hg] produces the subgoal ⊢ h (f a) (f b) (f c), where both g b and
g c have been rewritten. Instead of a theorem, we can also specify the name of a
constant. This temporarily adds the constant’s defining equations to the simp set.

At this point, you might wonder, “So what does simp do exactly?” Of course,
you could study the source code or look up the scientific literature. But this might
not be the most efficient use of your time. In truth, even expert users of proof
assistants do not fully understand the behavior of the tactics they use daily. The
most successful users adopt a relaxed, sporty attitude, trying tactics in sequence
and studying the emerging subgoals, if any, to see if they are on the right path.

As you keep on using simp and other tactics, you will develop some intuition
about what kinds of goal they work well on. This is one of the many reasons why
interactive theorem proving can be learned only by doing. Often, you will not un-
derstand exactly what Lean does—why a tactic succeeds, or fails. Theorem proving
can be very frustrating at times. The advice printed in large, friendly letters on the
cover of The Hitchhiker’s Guide to the Galaxy applies here: don’t panic.

3.6 Proofs by Mathematical Induction

The induction tactic performs structural induction on a value of an inductive
type. Structural induction means that the induction follows the structure of the
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inductive type. For natural numbers constructed from Nat.zero and Nat.succ,
structural induction corresponds to standard mathematical induction: To prove
p n, it suffices to prove p 0 and ∀k, p k→ p (k + 1). Equipped with induction,
we can reason about the addition and multiplication operations we defined by
recursion in Section 2.2.

Addition is defined by recursion on its second argument. We will prove two
theorems, add_zero and add_succ, that give us alternative equations that recurse
on the first argument. We start with add_zero:

theorem add_zero (n : N) :
add 0 n = n :=
by

induction n with
| zero => rfl
| succ n’ ih => simp [add, ih]

The induction tactic is followed by two subproofs identified by the constructor
they correspond to. In addition, any variables or hypotheses specific to the sub-
proof can be named explicitly after the name of the constructor.

The first case, labeled zero, corresponds to the base case ⊢ add 0 0 = 0. The
second case, labeled succ, corresponds to the induction step

n’ : N, ih : add 0 n’ = n’ ⊢⊢⊢ add 0 (Nat.succ n’) = Nat.succ n’

The names n’ and ih specified after succ are the names we give to the argument
of Nat.succ and the induction hypothesis, respectively. Other names are possible,
but it is generally good practice to call the induction hypothesis ih.

We can keep on proving theorems by structural induction:
theorem add_succ (m n : N) :
add (Nat.succ m) n = Nat.succ (add m n) :=
by

induction n with
| zero => rfl
| succ n’ ih => simp [add, ih]

theorem add_comm (m n : N) :
add m n = add n m :=
by

induction n with
| zero => simp [add, add_zero]
| succ n’ ih => simp [add, add_succ, ih]

theorem add_assoc (l m n : N) :
add (add l m) n = add l (add m n) :=
by

induction n with
| zero => rfl
| succ n’ ih => simp [add, ih]

Once we have proved that a binary operator is commutative and associative,
it is a good idea to let Lean’s automation, notably ac_rfl, know about this. The
following commands achieve this for add:
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instance IsAssociative_add : IsAssociative N add :=
{ assoc := add_assoc }

instance IsCommutative_add : IsCommutative N add :=
{ comm := add_comm }

(The instance mechanism will be explained in Chapter 5.) The following example
uses the ac_rfl tactic to reason up to associativity and commutativity of add:

theorem mul_add (l m n : N) :
mul l (add m n) = add (mul l m) (mul l n) :=
by

induction n with
| zero => rfl
| succ n’ ih =>

simp [add, mul, ih]
ac_rfl

Here are a few hints on how to carry out proofs by induction:

It is usually beneficial to perform induction following the structure of the
definition of one of the functions appearing in the goal. In particular, if a
function is defined by recursion on its nth argument, it usually makes sense
to perform the induction on that argument.
If the base case of an induction is difficult, this is often a sign that the wrong
variable was chosen or that some theorems should be proved first.

3.7 Induction Tactic

induction

induction term
[
with

| constructor1 names1 => tactics1
...

| constructorn namesn => tacticsn
]

The induction tactic performs structural induction on the specified term. This
gives rise to as many subgoals as there are constructors in the definition of the
term’s type. Induction hypotheses are available as hypotheses in the subgoals cor-
responding to recursive constructors (e.g., Nat.succ or List.cons). The optional
names names1, . . . , namesn are used for any emerging variables or hypotheses.

3.8 Cleanup Tactics

The following tactics help us clean up the goal. We did not need them so far, but
they can be helpful during proof exploration.

clear

clear variable-or-hypothesis1 . . . variable-or-hypothesisn
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The clear tactic removes the specified variables and hypotheses, as long as they
are not used anywhere else in the goal.

rename

rename type-of-variable-or-proposition-of-hypothesis => new-name

The rename tactic changes the name of a variable or hypothesis.

3.9 Summary of New Lean Constructs

Attribute

@[simp] adds a theorem to the simp set

Proof Command

by initiates a tactical proof

Tactics

ac_rfl proves l = r up to associativity and commutativity
apply matches the goal’s target against the theorem’s conclusion
assumption proves the goal using a hypothesis
clear removes a variable or hypothesis from the goal
exact proves the goal using the specified theorem
induction performs structural induction on a variable of an inductive type
intro moves ∀-quantified variables into the goal’s hypotheses
rename renames a variable or hypothesis
rfl proves l = r up to computation
rw rewrites once using the given theorem as a left-to-right rewrite rule
simp rewrites using a set of preregistered rewrite rules exhaustively
sorry stands for a missing proof

Tactic Combinator

{ . . . } focuses on the first subgoal; needs to prove that subgoal
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Forward Proofs

Tactical proofs work backwards. They start from the goal and reduce it to existing
theorems and hypotheses. Often it makes sense to work in a forward fashion: to
start with existing theorems and hypotheses and proceed step by step towards our
goal. Structured proofs are a style that supports this kind of reasoning. Tactical
proofs tend to be easier to write but harder to read. Most users combine the two
styles, using whichever seems the most appropriate for the situation. The higher
readability of structured proofs make them popular with some users.

Structured proofs are syntactic sugar sprinkled over Lean’s proof terms. They
are built using keywords such as assume, have, let, and show that mimic pen-
and-paper proofs. All Lean proofs, whether tactical or structured, are reduced
internally to proof terms. We have seen some specimens already, in Chapter 3:
Given hypotheses ha : a and hab : a→ b, the term hab ha is a proof term for the
proposition b, and we write hab ha : b. The names of theorems and hypotheses,
such as ha and hab, are also proof terms. Pushing this idea further, given hbc : b
→ c, we can build the proof term hbc (hab ha) for the proposition c. We can think
of hab as a function that converts a proof of a to a proof of b, and similarly for hbc.

Structured proofs are the default in Lean. They can be used outside tactic
mode. To enter tactic mode, we need to use a by command.

The concepts covered here are described in more detail in Chapters 2 to 4 of
Theorem Proving in Lean 4 [13]. Nederpelt and Geuvers’s textbook [22] and Van
Raamsdonk’s lecture notes [27] are other useful references.

4.1 Structured Proofs

As a first example, consider the following structured proof:
theorem fst_of_two_props :
∀a b : Prop, a → b → a :=
fix a b : Prop
assume ha : a
assume hb : b
show a from

ha

Each variable bound by a ∀ quantifier and each assumption of an implication is in-
troduced explicitly in the proof using the fix and assume commands. Several vari-
ables can be introduced simultaneously. We will often omit the types of variables,

37
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especially when they can be guessed from their names; however, we will always
spell out the propositions and put them one per line, to increase readability—
which is, after all, one of the main potential advantages of the structured style.
The show . . . from command at the end repeats the proposition to prove, for the
sake of readability, and gives the proof after the keyword from. The goal at this
point is a b : Prop, ha : a, hb : b ⊢ a.

Informally, we could write the proof as follows:

Fix some propositions a and b.
Assume (ha) a and (hb) b are true.
We must show a. This follows trivially from ha. ⊓⊔

Some authors would insert some qualifiers such as “arbitrary but fixed” in front
of “propositions,” especially in textbooks for first-year bachelor students, or they
would write “Let a and b be some propositions.” All these variants are equivalent.
And instead of “⊓⊔,” some authors would write “QED” to conclude the proof.

The Lean proof above is atypical in that the goal’s target appears among the
hypotheses. Usually, we must perform some intermediate reasoning steps, essen-
tially of the form “from so-and-so, we have such-and-such.” In Lean, each inter-
mediate step takes the form of a have command, as in the following example:

theorem prop_comp (a b c : Prop) (hab : a → b) (hbc : b → c) :
a → c :=
assume ha : a
have hb : b :=

hab ha
have hc : c :=

hbc hb
show c from

hc

Informally:

Assume (ha) a is true.
From ha and hab, we have (hb) b.
From hb and hbc, we have (hc) c.
We must show c. This follows trivially from hc. ⊓⊔

Notice that this is a forward proof: It progresses one theorem at a time from the
hypothesis a to the desired theorem c. Modus ponens (“from a and a→ b, derive
b”) is expressed by simple juxtaposition (e.g., hab ha).

In general, the fix–assume–show skeleton repeats the theorem’s statement.
We often name the fixed variables after the bound variables from the goal, as
we did here, but this is not mandatory. Moreover, it is good practice to avoid
shadowing existing variables. Between the last fix or assume and the show, we
can have as many have commands as we want, depending on how detailed we
want the argument to be. Details can increase readability, but providing too many
details can overwhelm even the most persistent reader.

The have command has a similar syntax to theorem but appears inside a struc-
tured proof. We can also think of a have as a definition. In have hb : b := hab ha,
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the right-hand side hab ha is a proof term for b, and the left-hand side hb is de-
fined as a synonym for that proof term. From then on, hb and hab ha can be used
interchangeably. Since hb and hc are used only once and their proofs are very
short, experts would tend to inline them, replacing hc by hbc hb and then hb by
hab ha, yielding

theorem prop_comp_inline (a b c : Prop) (hab : a → b)
(hbc : b → c) :
a → c :=
assume ha : a
show c from

hbc (hab ha)

A typical structured proof has the following fix–assume–have–show format:

theorem hr :
∀(c1 : σ1) . . . (cl : σl), P1 → · · · → Pm → R :=
fix (c1 : σ1) . . . (cl : σl)
assume h1 : P1

...
assume hm : Pm
have k1 : Q1 := . . .

...
have kn : Qn := . . .
show R from . . .

4.2 Structured Constructs

The previous section presented the main commands for writing structured proofs:
fix, assume, have, and show. We now review the components of structured proofs
more systematically.

Theorem or Hypothesis

The simplest structured proof, apart from sorry, is the name of a theorem or
hypothesis. If we have

theorem two_add_two_Eq_four :
2 + 2 = 4 :=
by . . .

then the theorem name two_add_two_Eq_four can be used as a proof of 2 + 2 = 4
later. For example:

theorem this_time_with_feelings :
2 + 2 = 4 :=
two_add_two_Eq_four

We can pass arguments to theorems to instantiate ∀ quantifiers and to dis-
charge assumptions. Suppose the theorem add_comm (m n : N) : add m n = add n
m is available, and suppose we want to prove its instance add 0 n = add n 0. This
can be achieved neatly using the name of the theorem and two arguments:
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theorem add_comm_zero_left (n : N) :
add 0 n = add n 0 :=
add_comm 0 n

This has the same effect as the tactical proof by exact add_comm 0 n, but is more
concise. The exact tactic can be seen as the inverse of by. Why enter tactic mode
only to leave it immediately?

Like with exact and apply, the theorem or hypothesis’s statement is matched
with the current goal up to computation. This gives some flexibility.

fix

fix names : type

The fix command moves ∀-quantified variables from the goal’s target to the local
context. It can be seen as a structured version of the intro tactic.

Note that the standard Lean tactic for fixing variables is fun. We prefer to use
fix, which is provided by LoVelib, as a more readable alternative.

assume

assume name : proposition

The assume command moves the leading assumption from goal’s target to the
local context. It can be seen as a structured version of the intro tactic.

Note that the standard Lean tactic for stating assumptions is fun. We prefer
to use assume, which is provided by LoVelib, as a more readable alternative.

have

have name : proposition :=
proof

The have command lets us state and prove an intermediate theorem, which may
refer to names introduced by previous fixes, assumes, and haves. The proof can
be tactical or structured. Generally, we tend to use structured proofs to sketch the
main argument and resort to tactical proofs for proving subgoals or uninteresting
intermediate steps. Another kind of mixture arises when we pass arguments to
theorem names. For example, given hab : a→ b and ha : a, the tactic exact hab
ha will prove the goal ⊢ b. Here, hab ha is a proof term nested inside a tactic.

let

let name
[
: type

]
:= term

The let command introduces a new local definition. It can be used to name a
complex object that occurs several times in the proof afterwards. It is similar to
have but is designed for computable data, not proofs. Expanding or introducing
a let corresponds to ζ-conversion (Section 3.2).

The construct let name
[
: type

]
:= term must be followed by a line break or

a semicolon (;).
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show

show proposition from
proof

The show command lets us repeat the goal to prove, which can be useful as docu-
mentation. It also allows us to rephrase the goal in a syntactically equal form up
to computation. Instead of the syntax show proposition from proof, we can sim-
ply write proof if we do not want to repeat the goal and do not need to rephrase
it. The proof can be tactical or structured.

4.3 Forward Reasoning about Connectives and Quantifiers

Reasoning about the logical connectives and quantifiers in a forward fashion uses
the same introduction and elimination rules as in tactic mode (Section 3.3). A few
examples will give the flavor. Let us start with conjunction:

theorem And_swap (a b : Prop) :
a ∧ b → b ∧ a :=
assume hab : a ∧ b
have ha : a :=

And.left hab
have hb : b :=

And.right hab
show b ∧ a from

And.intro hb ha

Even readers who do not know what And.left etc. mean can understand that we
extract a and b from a ∧ b and put them back together as b ∧ a. Mathematicians
would probably have an easier time making sense of this proof than of its tactical
counterpart:

theorem And_swap_tactical (a b : Prop) :
a ∧ b → b ∧ a :=
by

intro hab
apply And.intro
apply And.right
exact hab
apply And.left
exact hab

In general, backward proofs are easier to derive mindlessly, and most of the
automation provided by proof assistants works backwards. This makes sense: Pre-
tend that you are Miss Marple or Hercule Poirot on a murder investigation. A back-
ward investigation would start from the crime scene and try to extract clues that
potentially connect a handful of suspects to the crime. In contrast, a forward
investigation might start by questioning as many as eight billion people to deter-
mine whether they have an alibi. Which approach is more likely to succeed?

Our next examples concern one-point rules. These are theorems that can be
used to eliminate a quantifier when the bound variable can effectively take only
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one value. For example, the proposition ∀n, n = 666→ beast ≥ n can be simpli-
fied to beast ≥ 666. The following theorem justifies this simplification:

theorem Forall.one_point {α : Type} (t : α) (P : α → Prop) :
(∀x, x = t → P x) ↔ P t :=
Iff.intro

(assume hall : ∀x, x = t → P x
show P t from

by
apply hall t
rfl)

(assume hp : P t
fix x : α

assume heq : x = t
show P x from

by
rw [heq]
exact hp)

The proof may look intimidating, but it was not hard to develop. The key was to
proceed one step at a time. At first, we observed that the goal is an implication,
so we wrote

Iff.intro (_) (_)

The two placeholders are important to make this proof well formed. We already
put parentheses because we strongly suspect that these will be nontrivial proofs.
Because proofs are basically terms, which are basically programs, the advice we
gave in Section 1.4 applies here as well:

The key idea is that the [proof] should be syntactically correct at all
times. The only red underlining we should see in Visual Studio Code
should appear under the placeholders. In general, a good principle for
software development is to start with a program that compiles, per-
form the smallest change possible to obtain a new compiling program,
and repeat until the program is complete.

Hovering over the first placeholder makes the corresponding subgoal appear. We
can see that Lean expects a proof of ⊢ (∀x, x = t→ P x)→ P t, so we provide
a suitable skeleton. A structured proof of an implication consists of an assume
followed by a show:

Iff.intro
(assume hall : ∀x, x = t → P x
show P t from

_)
(_)

Each of the remaining placeholder can be replaced by a structured proof or a tac-
tical proof. To fill these placeholders, we can use essentially the same procedure
as for exhibiting an inhabitant of a type (Section 1.4), interpreting implication as
the function arrow and writing assume–show instead of fun.

Let us check that the rule actually works on our motivating example:
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theorem beast_666 (beast : N) :
(∀n, n = 666 → beast ≥ n) ↔ beast ≥ 666 :=
Forall.one_point _ _

It works. Matching Forall.one_point t P against the statement of beast_666
yields the instantiation t := 666 and P := (fun m 7→ beast ≥ m).

Finally, the one-point rule for ∃ demonstrates how to use the introduction and
elimination rules for ∃ in a structured proof:

theorem Exists.one_point {α : Type} (t : α) (P : α → Prop) :
(∃x : α, x = t ∧ P x) ↔ P t :=
Iff.intro

(assume hex : ∃x, x = t ∧ P x
show P t from

Exists.elim hex
(fix x : α

assume hand : x = t ∧ P x
have hxt : x = t :=

And.left hand
have hpx : P x :=

And.right hand
show P t from

by
rw [←hxt]
exact hpx))

(assume hp : P t
show ∃x : α, x = t ∧ P x from

Exists.intro t
(have tt : t = t :=

by rfl
show t = t ∧ P t from

And.intro tt hp))

Notice how we use Exists.elim hex to obtain an x such that x = t ∧ P x.

4.4 Calculational Proofs

In informal mathematics, we often express proofs as transitive chains of equali-
ties, inequalities, or equivalences (e.g., a = b = c, a ≥ b ≥ c, or a↔ b↔ c). In Lean,
such calculational proofs are supported by the calc command, which provides a
lightweight syntax and takes care of applying transitivity theorems for preregis-
tered relations, such as equality and the arithmetic comparison operators.

The general syntax is as follows:

calc
term0 op1 term1 :=

proof1
_ op2 term2 :=

proof2
...
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_ opn termn :=
proofn

The underscores (_) are part of the syntax. Each proofi justifies the statement
termi-1 opi termi. The operators opi need not be identical, but they must be
compatible with each other. For example, =, <, and ≤ are compatible, whereas >
and < are not.

A simple example follows:

theorem two_mul_example (m n : N) :
2 * m + n = m + n + m :=

calc
2 * m + n = m + m + n :=

by rw [Nat.two_mul]
_ = m + n + m :=

by ac_rfl

Mathematicians (assuming they would condescend to offer a justification for such
a trivial result) could have written the above proof roughly as follows:

2 * m + n = (m + m) + n (since 2 * m = m + m)
= m + n + m (by associativity and commutativity of +)

x ⊓⊔

In the Lean proof, the underscore stands for the term (m + m) + n, which we would
have had to repeat had we written the proof without calc:

theorem two_mul_example_have (m n : N) :
2 * m + n = m + n + m :=
have hmul : 2 * m + n = m + m + n :=

by rw [Nat.two_mul]
have hcomm : m + m + n = m + n + m :=

by ac_rfl
show _ from

Eq.trans hmul hcomm

Notice that with haves, we also need to explicitly invoke Eq.trans and to give
names to the two intermediate steps.

4.5 Forward Reasoning with Tactics

Many users prefer the tactic mode to structured proofs. But even in tactic mode,
it can be useful to reason in a forward fashion, mixing forward and backward
reasoning steps. The structured proof commands have, let, and calc are also
available as tactics, making this possible.

The following example demonstrates the have and let tactics on a theorem
we have seen several times already:

theorem prop_comp_tactical (a b c : Prop) (hab : a → b)
(hbc : b → c) :
a → c :=
by
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intro ha
have hb : b :=

hab ha
let c’ := c
have hc : c’ :=

hbc hb
exact hc

have

have name : proposition :=
proof

The have tactic lets us state and prove an intermediate theorem in tactic mode.
Afterwards, the theorem is available as a hypothesis in the goal state.

let

let name
[
: type

]
:= term

The let tactic lets us introduce a local definition in tactic mode. Afterwards, the
defined symbol and its definition are available in the goal state.

calc

calc
term0 op1 term1 :=

proof1
_ op2 term2 :=

proof2
...

_ opn termn :=
proofn

The calc tactic lets us enter a calculational proof (Section 4.4) in tactic mode. The
tactic has the same syntax as the structured proof command of the same name.
We can regard calc . . . , where calc is a tactic, as an alias for apply (exact calc
. . .), where calc is the structured proof command described above.

4.6 Dependent Types

Dependent types are the defining feature of the dependent type theory family of
logics. Although you may not be familiar with the terminology, you are likely to
be familiar with the concept in some form or other.

Consider a function pick that takes a natural number n (i.e., a value from N
= {0, 1, 2, . . .}) and that returns a natural number between 0 and n. Intuitively,
pick n should have the type {0, 1, . . ., n} (i.e., the type consisting of all natural
numbers i ≤ n). In Lean, this is written {i : N // i ≤ n}. This would be the type



46 Chapter 4. Forward Proofs

of pick n. Mathematically inclined readers might want to think of pick as an N-
indexed family of terms

(pick n : {i : N // i ≤ n})n:N

in which the type of each term depends on the index—e.g., pick 5 : {i : N //
i ≤ 5}. But what would be the type of pick itself? We would like to express that
pick is a function that takes an argument n : N and that returns a value of type
{i : N // i ≤ n}. To capture this, we will write

pick : (n : N)→ {i : N // i ≤ n}

This is a dependent type: The type of the result depends on the value of the
argument n. (The variable name n itself is immaterial; we could also write m or x.)

Unless otherwise specified, a dependent type means a type depending on a
(non-type) term, as above, with n : N as the term and {i : N // i ≤ n} as the type
that depends on it. But:

A type may also depend on another type—for example, the type construc-
tor List, its η-expanded variant fun α : Type 7→ List α, or the polymor-
phic type fun α : Type 7→ α→ α of functions with the same domain and
codomain.
A term may depend on a type—for example, the polymorphic identity func-
tion fun α : Type 7→ fun x : α 7→ x.
And of course, a term may also depend on a term—for example, fun n : N
7→ n + 2.

In summary, there are four cases for fun x 7→ t:

Body (t) Argument (x) Description

A term depending on a term Simply typed λ-expression
A type depending on a term Dependent type (in the narrow sense)
A term depending on a type Polymorphic term
A type depending on a type Type constructor

The last three rows correspond to the three axes of Henk Barendregt’s λ-cube.1
The App and Fun rules presented in Section 1.3 must be generalized to work

with dependent types:

C ⊢⊢⊢ t : (x : σ)→ τ[x] C ⊢⊢⊢ u : σ
App′

C ⊢⊢⊢ t u : τ[u]

C, x : σ ⊢⊢⊢ t : τ[x]
Fun′

C ⊢⊢⊢ (fun x : σ 7→ t) : (x : σ)→ τ[x]

The notation τ[x] stands for a type that may contain x, and τ[u] stands for the
same type where all occurrences of x have been replaced by u.

The simply typed case arises when x does not occur in τ[x]. Then, we can
simply write σ→ instead of (x : σ)→. The familiar notation σ→ τ is equivalent

1https://en.wikipedia.org/wiki/Lambda_cube

https://en.wikipedia.org/wiki/Lambda_cube
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to (_ : σ) → τ. It is easy to check that App′ and Fun′ coincide with App and Fun
when x does not occur in τ[x].

The example below demonstrates App′:

⊢⊢⊢ pick : (n : N)→ i : N // i ≤ n 5 : N
App′

⊢⊢⊢ pick 5 : i : N // i ≤ 5

The next example demonstrates Fun′:

α : Type, x : α ⊢⊢⊢ x : α
Fun or Fun′

α : Type ⊢⊢⊢ (fun x : α 7→ x) : α→ α
Fun′

⊢⊢⊢ (fun α : Type 7→ fun x : α 7→ x) : (α : Type)→ α→ α

The picture is incomplete because we only check that the terms—the entities
on the left-hand side of a colon (:)—are well typed. The types—the entities on the
right-hand side of a colon—should also be checked, using the same type system.
For example, the type of Nat.succ is N→ N, whose type is Type. Types of types,
such as Type and Prop, are called universes. We will study them more closely in
Chapter 12.

Remarkably, universal quantification is simply an alias for a dependent type:
∀x : σ, τ abbreviates (x : σ)→ τ. This will become clearer below.

4.7 The PAT Principle

You will likely have noticed that the same symbol→ is used both for implication
(e.g., False→ True) and as the type constructor of functions (e.g., Z→ N). With-
out context, we cannot tell whether a→ b refers to the type of a function with
domain a and codomain b or to the proposition “a implies b.”

It turns out that not only the two concepts look the same, they are the same.
This is called the PAT principle, where PAT is a double mnemonic:

PAT = propositions as types PAT = proofs as terms

Furthermore, because types are also terms, we also have that propositions are
terms. However, PAT is not a quadruple mnemonic ( PAT = proofs as types ). Also
note that not all types are propositions, and not all terms are proofs.

By using terms and types to represent proofs and propositions, dependent
type theory achieves a considerable economy of concepts. The question “Is H a
proof of P?” becomes equivalent to “Does the term H have type P?” As a result,
inside of Lean, there is no proof checker, only a type checker.

Let us review the dramatis personae one by one. We use the mathematical
variables σ, τ for types; P, Q for propositions; t, u, x for terms; and h, G, H, for
proofs.

Starting with “propositions as types,” for types, we have the following:
σ→ τ is the type of functions from σ to τ.
(x : σ)→ τ[x] is the dependent type of functions from x : σ to τ[x].

In contrast, for propositions, we have the following:
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P→ Q can be read as “P implies Q,” or as the type of functions mapping proofs
of P to proofs of Q.
∀x : σ, Q[x] can be read as “for all x, Q[x],” or as the type of functions of
type (x : σ)→ Q[x], mapping values x of type σ to proofs of Q[x].

Continuing with “proofs as terms,” for terms, we have the following:
A constant is a term.
A variable is a term.
t u is the application of function t to argument u.
fun x 7→ t[x] is a function mapping x to t[x].

In contrast, for proofs (i.e., proof terms), we have the following:
The name of a theorem or hypothesis is a proof.
H t, which instantiates the leading parameter or quantifier of proof H’s state-
ment with term t, is a proof.
H G, which discharges the leading assumption of H’s statement with proof G,
is a proof. This operation is called modus ponens.
fun h : P 7→ H[h] is a proof of P→ Q, assuming H[h] is a proof of Q for all
h : P.
fun x : σ 7→ H[x] is a proof of ∀x : σ, Q[x], assuming H[x] is a proof of Q[x]
for all x : σ.

The last two cases are justified by the Fun′ rule. In a structured proof, as opposed
to a raw proof term, we would write assume or fix instead of fun, and we would
probably want to repeat the conclusion using show for readability, as follows:

theorem case_4 :
P → Q :=

assume h : P
show Q from
H[h]

theorem case_5 :
∀x : σ, Q[x] :=

fix x : τ

show Q[x] from
H[x]

The terminology of dependent type theory can be quite confusing, because
some words have a narrow and a broad sense. The following diagram captures
the various meanings of important words:

term︷ ︸︸ ︷
2 + 2 :

type︷︸︸︷
N : Type : · · ·

True.intro︸ ︷︷ ︸
proof

: True︸ ︷︷ ︸
proposition

: Prop : · · ·

universes

types

terms

According to the broad senses, any expression is a term, any expression that may
occur on the right-hand side of a typing judgment is a type, and any expression
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that may occur on the right-hand side of a typing judgment with a type on its
left-hand side is a universe. This is consistent with the reading of t : u as “t has
type u” and the notion that universes are types of types.

Some commands are provided in Lean under two different names but are es-
sentially the same by the PAT principle. This is the case for fix and assume; indeed,
both are defined by LoVelib as aliases for fun. There are also pairs with slightly
different behavior, such as def/theorem and let/have. The fundamental differ-
ence is this: When we define some function or data, we care not only about the
type but also about the body—the behavior. On the other hand, once we have
proved a theorem, the proof becomes irrelevant. All that matters is that there is
a proof. We will return to the topic of proof irrelevance in Chapter 12.

The following correspondence table summarizes the differences between tac-
tical proofs, structured proofs, and raw proof terms:

Tactical proof Structured proof Raw proof term

intro x fix x : τ fun x 7→
intro h assume h : P fun h 7→
have k := H have k := H (fun k 7→ . . .) H
let x := t let x := t (fun x 7→ . . .) t
exact (H : P) show P from H H : P
calc . . . calc . . . calc . . .

Notice that let x := t followed by u is essentially a sophisticated way to write
(fun x 7→ u) t.

4.8 Induction by Pattern Matching and Recursion

In Section 3.6, we reviewed the use of the induction tactic to perform proofs by
induction. An alternative, more flexible style relies on pattern matching and the
PAT principle.

Recall the definition of the reverse of a list from Section 2.2:

def reverse {α : Type} : List α → List α

| [] => []
| x :: xs => reverse xs ++ [x]

In fact, reverse exists as List.reverse in Lean’s standard library, but our defi-
nition is optimized for reasoning. A useful property to prove is that reverse is
its own inverse: reverse (reverse xs) = xs for all lists xs. However, if we try to
prove it by induction, we quickly run into an obstacle. The induction step is

ih : ∀xs, reverse (reverse xs) = xs ⊢⊢⊢ reverse (reverse xs ++ [x]) = x :: xs

Notice the unpleasant presence of ++ [x] inside the double reverse sandwich.
We need a way to “distribute” the outer reverse over ++ to obtain a term that
matches the induction hypothesis’s left-hand side. The trick is to prove and use
the following theorem:

theorem reverse_append {α : Type} :
∀xs ys : List α,
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reverse (xs ++ ys) = reverse ys ++ reverse xs
| [], ys => by simp [reverse]
| x :: xs, ys => by simp [reverse, reverse_append xs]

The theorem’s proof arguably looks more like a recursive function definition than a
proof. The patterns on the left, [] and x :: xs, correspond to the two constructors
of the ∀-quantified variable xs. On the right-hand side of each := symbol is a
proof for the corresponding case. The variables on which we can pattern-match
are those that appear in the ∀ quantifiers, in order of occurrence (here, xs and ys).
Inside the induction step’s proof, the induction hypothesis is available under the
same name as the theorem we are proving (reverse_append).

We explicitly pass xs as argument to the induction hypothesis. This restricts
the hypothesis so that it only applies to xs but not to other lists. In particular,
this ensures that the theorem will not be applied to x :: xs, which could lead to a
circular argument: “To prove reverse_append (x :: xs), use reverse_append (x
:: xs).” Lean’s termination checker would notice that the argument is ill-founded
and raise an error, but we want to avoid that. In addition, the explicit argument
xs is useful as documentation, effectively saying, “The only recursive instance of
the theorem we need is the one on xs.”

For reference, a tactical proof would be as follows:

theorem reverse_append_tactical {α : Type} (xs ys : List α) :
reverse (xs ++ ys) = reverse ys ++ reverse xs :=
by

induction xs with
| nil => simp [reverse]
| cons x xs’ ih => simp [reverse, ih]

The theorem would also be provable, and useful, if we put [y] instead of ys.
But it is a good habit to state theorems as generally as possible. This results
in more reusable libraries. Moreover, this is often necessary to obtain a strong
enough induction hypothesis in a proof by induction. In general, finding the right
inductions and theorems can require thought and creativity.

Simultaneous pattern matching on multiple variables is supported (e.g., xs
and ys above). The patterns are then separated by commas. The general format
is

theorem name (params1 : type1) . . . (paramsm : typem) :
statement
| patterns1 => proof1

...
| patternsn => proofn

Notice the strong similarity with the syntax of def (Section 2.2). The two com-
mands are, in fact, almost the same, the main exception being that theorem con-
siders the defined term or the proof opaque, whereas def keeps it transparent.
Since the actual proofs are irrelevant once a theorem is proved (Section 12), there
is no need to expand them later. A similar distinction exists between let and
have.

By the PAT principle, a proof by induction by pattern matching and recursion
is the same as a recursive proof term. When we invoke the induction hypothesis,
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we are really just invoking a recursive function recursively. This explains why the
induction hypothesis has the same name as the theorem we prove. Lean’s termi-
nation checker is used to establish well-foundedness of the proof by induction.

With the reverse_append theorem in place, we can return to our initial goal:

theorem reverse_reverse {α : Type} :
∀xs : List α, reverse (reverse xs) = xs
| [] => by rfl
| x :: xs =>

by simp [reverse, reverse_append, reverse_reverse xs]

Induction by pattern matching and recursion is popular among Lean users.
Its main advantages are its convenient syntax and its support for well-founded
induction, which is more powerful than structural induction as provided by the
induction tactic (Section 3.7). However, in this guide, we will not need the full
power of well-founded induction. Furthermore, for subtle logical reasons, induc-
tion by pattern matching and recursion is not available for inductive predicates,
which are the topic of Chapter 6. For these reasons, we will often prefer to use the
induction tactic.

4.9 Summary of New Lean Constructs

Proof Commands

assume states assumptions
calc combines proofs by transitivity
fix fixes variables
have states an intermediate theorem
let introduces a local definition
show states the target

Tactics

calc combines proofs by transitivity
have states an intermediate theorem
let introduces a local definition
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Chapter 5

Functional Programming

We take a closer look at the essence of typed functional programming: induc-
tive types, proofs by induction, recursive functions, pattern matching, structures
(records), and type classes. The concepts covered here are described in more
detail in Chapters 7 to 10 of Theorem Proving in Lean 4 [13].

5.1 Inductive Types

Inductive types are modeled after the data types of typed functional programming
languages (e.g., Haskell, ML, OCaml). They are also reminiscent of sealed classes
in Scala. Already in Chapter 2, we saw some basic inductive types: the natural
numbers, the finite lists, and a type of arithmetic expressions. In this chapter, we
revisit the lists and study binary trees. We also take a brief look at vectors of
length n, a dependent type.

Recall the definition of natural numbers as an inductive type:

inductive Nat : Type where
| zero : Nat
| succ : Nat → Nat

This definition introduces the type Nat and the two constants Nat.zero and Nat.
succ, called constructors. The definition also asserts some properties about the
constructors, which is why we use the inductive command. In addition, it intro-
duces further constants that are used internally to support induction and recur-
sion.

As we saw in Section 2.1, an inductive type is a type whose members are all the
values that can be built by a finite number of applications of its constructors, and
only those. Mottos:

No junk: The type contains no values beyond those expressible using the
constructors.
No confusion: Values built using a different combination of constructors are
different.

For natural numbers, “no junk” means that there exist no special values such as
−1, ε,∞, or NaN that cannot be expressed using a finite combination of Nat.zero
and Nat.succ, and “no confusion” ensures that Nat.zero ̸= Nat.succ n for all n
and that Nat.succ is injective. In addition, values of inductive types are always
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finite. The infinite term

Nat.succ (Nat.succ (Nat.succ (Nat.succ . . .)))

is not a value. Nor does there exist a value n such that Nat.succ n = n, as we will
show below.

Inductive types are very convenient to use, because they support induction
and recursion and their constructors are well behaved, but not all types can be
defined as an inductive type. In particular, mathematical types such as Q (the
rationals) and R (the real numbers) require more elaborate constructions, based
on quotienting and subtyping. This will be explained in Chapters 12 and 14.

5.2 Structural Induction

Structural induction is a generalization of mathematical induction to arbitrary in-
ductive types. To prove a goal n : N ⊢ P[n] by structural induction on n, it suffices
to show two subgoals, traditionally called the base case and the induction step:

⊢⊢⊢ P[0]

k : N,ih : P[k] ⊢⊢⊢ P[k + 1]

We can of course also write P[Nat.zero] and P[Nat.succ k].
In general, the situation is more complex. The goal might contain some ex-

tra hypotheses (e.g., Q) that do not depend on n and others (e.g., R[n]) that do.
Assuming we have one hypothesis of each kind, this gives the initial goal

hQ : Q, n : N, hR : R[n] ⊢⊢⊢ S[n]

Structural induction on n then produces the two subgoals

hQ : Q, hR : R[0] ⊢⊢⊢ S[0]

hQ : Q, k : N, ih : R[k]→ S[k], hR : R[k + 1] ⊢⊢⊢ S[k + 1]

The hypothesis Q is simply carried over unchanged from the initial goal, whereas
R[n] ⊢ S[n] is treated almost the same as if the goal’s target had been R[n]→
S[n]. This is easy to check by taking P[n] := R[n]→ S[n] in the first example
above. Since this general format is very verbose and hardly informative (now that
we understand how it works), from now on we will present goals in the simplest
form possible, without extra hypotheses.

For lists, given a goal xs : list α ⊢ P[xs], structural induction on xs yields

⊢⊢⊢ P[[]]

y : α, ys : list α, ih : P[ys] ⊢⊢⊢ P[y :: ys]

We can of course also write List.nil and List.cons y ys. There is no induction
hypothesis associated with y, because y is not of list type.

For arithmetic expressions, the base cases are

i : Z ⊢⊢⊢ P[AExp.num i] x : String ⊢⊢⊢ P[AExp.var x]
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and the induction steps are

e1 e2 : AExp, ih1 : P[e1], ih2 : P[e2] ⊢⊢⊢ P[AExp.add e1 e2]

e1 e2 : AExp, ih1 : P[e1], ih2 : P[e2] ⊢⊢⊢ P[AExp.sub e1 e2]

e1 e2 : AExp, ih1 : P[e1], ih2 : P[e2] ⊢⊢⊢ P[AExp.mul e1 e2]

e1 e2 : AExp, ih1 : P[e1], ih2 : P[e2] ⊢⊢⊢ P[AExp.div e1 e2]

Notice the two induction hypotheses, about e1 and e2.
In general, structural induction produces one subgoal per constructor. In each

subgoal, induction hypotheses are available for all constructor arguments of the
type we are performing the induction on.

Given an inductive type τ, the procedure to compute the subgoals is always
the same:

1. Replace the hole in P[ ] with each possible constructor applied to fresh vari-
ables (e.g., y :: ys), yielding as many subgoals as there are constructors.

2. Add these new variables (e.g., y, ys) to the local context.
3. Add induction hypotheses for all new variables of type τ.
As an example, we will prove that Nat.succ n ̸= n for all n : N. We start with

an informal proof:

The proof is by structural induction on n.
Case 0: We must show Nat.succ 0 ̸= 0. This follows from the “no con-
fusion” property of the constructors of inductive types.
Case Nat.succ k: The induction hypothesis is Nat.succ k ̸= k. We
must show Nat.succ (Nat.succ k) ̸= Nat.succ k. By the injectivity of
Nat.succ, we have that Nat.succ (Nat.succ k) = Nat.succ k is equiv-
alent to Nat.succ k = k. Thus, it suffices to prove Nat.succ k ̸= k,
which corresponds exactly to the induction hypothesis. ⊓⊔

Notice the main features of this informal proof, which you should aim to re-
produce in your own informal arguments:

The proof starts with an unambiguous announcement of the type of proof
we are carrying out (e.g., which kind of induction and on which variable).
The cases are clearly identified, and for each case, both the goal’s target and
the hypotheses are stated.
The key theorems on which the proof relies are explicitly invoked (e.g., injec-
tivity of Nat.succ).

Now let us carry out the proof in Lean:

theorem Nat.succ_neq_self (n : N) :
Nat.succ n ̸= n :=

by
induction n with
| zero => simp
| succ n’ ih => simp [ih]

The routine reasoning about constructors is all carried out by simp.
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5.3 Structural Recursion

Structural recursion is a form of recursion that allows us to peel off one construc-
tor from the value on which we recurse. The factorial function below is structurally
recursive:

def fact : N → N
| 0 => 0
| n + 1 => (n + 1) * fact n

The constructor we peel off here is Nat.succ (written + 1). Such functions are guar-
anteed to call themselves only finitely many times before the recursion stops; for
example, fact 12345 will call itself 12345 times. The function is said to terminate.
This property helps ensure logical consistency.

With structural recursion, there are as many equations as there are construc-
tors. Novices are often tempted to supply additional, redundant cases, as in the
following example:

def factThreeCases : N → N
| 0 => 0
| 1 => 1
| n + 1 => (n + 1) * factThreeCases n

It is in your own best interest to resist this temptation. The more cases you have
in your definitions, the more work it will be to reason about them. Keep in mind
the saying that one good definition is worth three theorems.

For structurally recursive functions, Lean can automatically prove termination.
For more general recursive schemes, the termination check may fail. Sometimes
it does so for a good reason, as in the following example:

-- fails
def illegal : N → N
| n => illegal n + 1

If Lean were to accept this definition, we could exploit it to prove that 0 = 1, by
subtracting illegal n from each side of the equation illegal n = illegal n + 1
. From 0 = 1, we could derive False, and from False, we could derive anything.
Clearly, we do not want that.

If we had used opaque and axiom, nothing could have saved us:

opaque immoral : N → N

axiom immoral_eq (n : N) :
immoral n = immoral n + 1

theorem proof_of_False :
False :=
have hi : immoral 0 = immoral 0 + 1 :=

immoral_eq 0
have him :

immoral 0 - immoral 0 = immoral 0 + 1 - immoral 0 :=
by rw [←hi]

have h0eq1 : 0 = 1 :=



5.4. Pattern Matching Expressions 59

by simp at him
show False from

by simp at h0eq1

Another reason for preferring def over opaque and axiom is that the defining
equations can be used in computations. Tactics such as rfl that unify up to com-
putation become stronger each time we introduce a definition, and the diagnosis
commands #eval and #reduce can be used on defined constants.

The observant reader will have noticed that the above definitions of factorial
are mathematically wrong: fact shockingly returns 0 regardless of the argument.
We quite literally facted up. These embarrassing mistakes remind us to test our
definitions and prove some properties about them. Although flawed axioms arise
now and then, what is much more common are definitions that fail to capture the
intended concepts. Just because a function is called fact does not mean that it
actually computes factorials.

5.4 Pattern Matching Expressions

Pattern matching is possible not only at the top level of a def command but also
deeply within terms, via a match expression. The construct has the following gen-
eral syntax:

match term1, . . ., termm with
| pattern11, . . ., pattern1m => result1

...
| patternn1, . . ., patternnm => resultn

The construct is vaguely reminiscent of switch in many programming languages.
An English translation of the above match expression follows:

Consider the terms term1, . . ., termm.
If they are respectively of the forms pattern11, . . ., pattern1m,
then yield result1.

...
If they are respectively of the forms patternn1, . . ., patternnm,
then yield resultn.

The patterns may contain variables, constructors, and nameless placeholders
(_). The resulti expressions may refer to the variables introduced in the corre-
sponding patterns.

The following function definition demonstrates the syntax of pattern matching
within expressions:

def bcount {α : Type} (p : α → Bool) : List α → N
| [] => 0
| x :: xs =>

match p x with
| true => bcount p xs + 1
| false => bcount p xs
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The bcount function counts the number of elements in a list that satisfy the given
predicate p. The predicate’s codomain is Bool. As a general rule, we will use type
Bool, of Booleans, within programs and use the type Prop, of propositions, when
stating properties of programs. The two values of type Bool are called false and
true (in lowercase).1 The connectives are called or (infix: ||), and (infix: &&), and
not (prefix: !).

The following diagram shows the interpretations of Bool and Prop:

Bool: · · Prop:

· ·
· · · ·

· · ·

Dots represents elements, circles represents types, and the rectangle represents
a type of types. We see that Bool are interpreted as a set with two values, whereas
Prop consists in an infinite number of propositions (the types), each of which has
zero or more proofs (the elements). We will refine this picture in Chapter 6.

We cannot match on a proposition (of type Prop), but we can use if–then–
else instead. For example, the min operator on natural numbers operator can be
defined as follows:

def min (a b : N) : N :=
if a ≤ b then a else b

This requires a decidable (i.e., executable) proposition. This is the case for ≤:
Given concrete values for the arguments, such as 35 and 49, Lean can reduce 35
≤ 49 to True. Lean keeps track of decidability using a mechanism called type
classes, which will be explained below.

5.5 Structures

Lean provides a convenient syntax for defining records, or structures as they are
also called. These are essentially nonrecursive single-constructor inductive types
but with some syntactic sugar.

The definition below introduces a structure called RGB with three fields of type
N called red, green, and blue:

structure RGB where
red : N
green : N
blue : N

This definition has roughly the same effect as the following commands:

inductive RGB : Type where
| mk : N → N → N → RGB

1Lean also allows us to use True and False, but these are then implicitly converted from Prop to
Bool. We generally recommend to avoid relying on such implicit coercions. There is unfortunately
no way to disable them.
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def RGB.red : RGB → N
| RGB.mk r _ _ => r

def RGB.green : RGB → N
| RGB.mk _ g _ => g

def RGB.blue : RGB → N
| RGB.mk _ _ b => b

We can define a new structure as the extension of an existing structure. The
definition below extends RGB with a fourth field, called alpha:

structure RGBA extends RGB where
alpha : N

The general syntax to define structures is

structure structure-name (params1 : type1) . . . (paramsk : typek)[
extends structure1, . . ., structurem

]
where

field-name1 : field-type1
...

field-namen : field-typen

The parameters params1, . . . , paramsk are effectively additional fields, but unlike
the fields field-name1, . . . , field-namen, they are stored in the type, as arguments
to the type constructor (structure-name).

Values can be specified in a variety of syntaxes:
def pureRed : RGB :=

RGB.mk 0xff 0x00 0x00

def pureGreen : RGB :=
{ red := 0x00

green := 0xff
blue := 0x00 }

def semitransparentGreen : RGBA :=
{ pureGreen with

alpha := 0x7f }

The definition of semitransparentGreen copies all the values from pureGreen ex-
cept for the alpha field, which it sets explicitly.

Next, we define an operation called shuffle:
def shuffle (c : RGB) : RGB :=

{ red := RGB.green c
green := RGB.blue c
blue := RGB.red c }

The definition relies on the generated selectors RGB.red, RGB.green, and RGB.
blue. Instead of RGB.red c, we could also write c.red, and similarly for the other
fields. Sometimes we will see this notation in Lean’s output, even if we do not use
it ourselves.

Applying shuffle three times in a row is the same as not applying it at all:
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theorem shuffle_shuffle_shuffle (c : RGB) :
shuffle (shuffle (shuffle c)) = c :=
by rfl

5.6 Type Classes

Type classes are a mechanism that was popularized by Haskell and that is present
in several proof assistants. In Lean, a type class is a structure type combining
abstract constants and their properties. A type can be declared an instance of
a type class by providing concrete definitions for the constants and proving that
the properties hold. Based on the type, Lean retrieves the relevant instance.2

A simple example is the type class Inhabited, which requires only a constant
Inhabited.default and no properties:

class Inhabited (α : Type) : Type where
default : α

The syntax is the same as for structures, except with the keyword class instead of
structure. The parameter α represents an arbitrary type that could be a member
of this class. This particular type class has a single parameter and a single field,
but in general a type class can have multiple parameters and multiple fields.

Any type that has at least one element can be registered as an instance of the
Inhabited type class. For example, we can register N by choosing an arbitrary
number to be the default value:

instance Nat.Inhabited : Inhabited N :=
{ default := 0 }

This specifies a value called Nat.Inhabited of type Inhabited N. Because we use
the keyword instance instead of def, the structure value is registered as the
canonical instance to use whenever a structure of type Inhabited N is desired.
In the global table storing type class instances, there is now an entry

Inhabited N 7→ Nat.Inhabited

For lists, the empty list is an obvious default value that can be constructed
even if α is not inhabited:

instance List.Inhabited {α : Type} : Inhabited (List α) :=
{ default := [] }

This adds the following entry to the global table:

Inhabited (List ?α) 7→ List.Inhabited

Sometimes we may want to supply several instances of a given type class for
the same type. Lean will then choose the first matching instance it finds.

As an example, observe that finite functions of type α→ β can be represented
by their function tables, of type β × · · · × β (with |α| copies of β). Accordingly,
|α→ β| = |β||α|. To make this 0, we must have both |β| = 0 and |α| ̸= 0. In
other words, the type α→ β is inhabited if either (1) β is inhabited or (2) α is not
inhabited. We focus on case (1):

2Despite its name, Lean’s type class mechanism is more closely related to Scala’s implicit argu-
ments than to Haskell’s type classes.
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instance Fun.Inhabited {α β : Type} [Inhabited β] :
Inhabited (α → β) :=
{ default := fun a : α 7→ Inhabited.default }

The instance relies itself on an instance of the same type class but on a different
type. This occurs frequently.

The type α × β of pairs, also called product type, contains values of the form
(a, b), where a : α and b : β. Given a pair ab : α × β, the first and second com-
ponents can be extracted by writing Prod.fst ab and Prod.snd ab. To provide an
inhabitant of α × β, we need both an inhabitant of α and an inhabitant of β:

instance Prod.Inhabited {α β : Type}
[Inhabited α] [Inhabited β] :

Inhabited (α × β) :=
{ default := (Inhabited.default, Inhabited.default) }

Using the Inhabited type class, we can define the head operation on lists: the
function that returns the first element of a list. Because an empty list contains no
elements, there is no meaningful value we can return in that case. Given a type
that belongs to the Inhabited type class, we can simply return the default value:

def head {α : Type} [Inhabited α] : List α → α

| [] => Inhabited.default
| x :: _ => x

We require that α belongs to Inhabited by writing [Inhabited α]. This allows us
to access Inhabited.default in the definition.

The syntax [Inhabited α] adds an implicit argument of the head constant. But
unlike for other implicit arguments, Lean performs a type class search through all
declared instances to determine the value of this argument. Thus, when running
the command

#eval head ([] : List N)

Lean will look for an Inhabited N instance and find Nat.Inhabited, the instance
we declared above. In that declaration, we set default to be 0 and hence this
is what #eval prints. If multiple instances are applicable and Lean chooses the
wrong one, we can use the @ syntax to transform type class arguments into explicit
arguments and supply the desired type class instance.

Let us take a closer look at Inhabited.default:

Inhabited.default {α : Type} [Inhabited α] : α

Notice that the selectors of plain structures use parentheses ( ) whereas those
of type classes use square brackets [ ]. When we used Inhabited.default α to
define head, Lean looked for an instance of Inhabited α in the global table of
registered instances and in the local context. The global table contained an entry
for Inhabited N but none that matched Inhabited α. On the other hand, the local
context contained an anonymous parameter of type Inhabited α, which could be
used.

Lean’s core library defines List.head exactly as we did. In practice, almost
all types are nonempty (with the notable exception of False), so the Inhabited
restriction is hardly an issue.

We can prove abstract theorems about the Inhabited type class, such as
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theorem head_head {α : Type} [Inhabited α] (xs : List α) :
head [head xs] = head xs

The assumption [Inhabited α] is needed to use the operator head on lists of
type List α. If we omit this assumption, Lean will raise an error telling us that
type class synthesis failed.

There are more type classes with only a constant but no properties, including

class Zero (α : Type) where
zero : α

class Neg (α : Type) where
neg : α → α

class Add (α : Type) where
add : α → α → α

class One (α : Type) where
one : α

class Inv (α : Type) where
inv : α → α

class Mul (α : Type) where
mul : α → α → α

These syntactic type classes introduce constants that are used in different con-
texts with different semantics. For example, one can stand for the natural num-
ber 1, the integer 1, the real 1, the identity matrix, and many other concepts of 1.
The main purpose of these type classes is to form the foundation for a rich hierar-
chy of algebraic type classes (groups, monoids, ring, fields, etc.) and to allow the
overloading of common mathematical symbols such as +, *, 0, 1, and −1.

Syntactic type classes do not impose severe restrictions on the types that can
be declared instances. In contrast, the semantic type classes contain properties
that restrict how the given constants behave.

In Section 3.6, we encountered the following semantic type classes:

class IsCommutative (α : Type) (f : α → α → α) where
comm : ∀a b, f a b = f b a

class IsAssociative (α : Type) (f : α → α → α) where
assoc : ∀a b c, f (f a b) c = f a (f b c)

This time, the associations are not from a type to a constant, but from a type and
a function to a property. Lean does not mind the abuse: Although they are called
type classes, Lean’s type classes are very flexible and can be used to express all
sorts of constraints.

Conceptually, IsCommutative is a dependent type of triples (α, f, comm), and
similarly for IsAssociative. The type of f depends on α, and the type of comm
depends on α and f. Although they are parameters, α and f are also stored along
with comm.

In Section 3.6, we registered our add function on N as a commutative and as-
sociative operation:

instance IsAssociative_add : IsAssociative N add :=
{ assoc := add_assoc }

instance IsCommutative_add : IsCommutative N add :=
{ comm := add_comm }
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Whenever we try to access @IsCommutative.comm N add, we obtain add_comm, and
similarly for @IsAssociative.assoc N add. The ac_rfl tactic tries to look up the
comm and assoc properties for all binary operators in the problem and exploits
the properties whenever they are present.

The general syntax to define a type class is as follows:

class class-name (params1 : type1) . . . (paramsk : typek)[
extends structure1, . . ., structurem

]
where

constant-name1 : constant-type1
...

constant-namen : constant-typen
property-name1 : proposition1

...
property-namep : propositionp

The general syntax to instantiate a type class is as follows:

instance instance-name : type-class arguments :=
{ constant1 := definition1,

...
constantn := definitionn,
property1 := proof1,

...
propertyp := proofp }

5.7 Lists

Lean provides a rich library of functions on finite lists. In this section, we will re-
view some of them, and we will define some of our own; these are good exercises
to familiarize ourselves with functional programming in Lean.

In the first example, we perform a case distinction on a list:

theorem head_head_cases {α : Type} [Inhabited α]
(xs : List α) :

head [head xs] = head xs :=
by

cases xs with
| nil => rfl
| cons x xs’ => rfl

The proof relies on cases, a relative of induction. It performs a case distinction on
its argument but does not generate induction hypotheses. The invocation cases
xs transforms a goal ⊢ P[xs] into two subgoals, ⊢ P[[]] and ⊢ P[x :: xs’].
We could also have used induction xs. If you find yourself hesitating between
induction and cases, you can always choose induction and see afterwards if
you needed the induction hypotheses—if you did not need it, it is good style to
document that fact by replacing induction by cases.

In a structured proof, we can use match expressions to perform a case distinc-
tion:
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theorem head_head_match {α : Type} [Inhabited α]
(xs : List α) :

head [head xs] = head xs :=
match xs with
| List.nil => by rfl
| List.cons x xs’ => by rfl

In the next example, we show how to exploit injectivity of constructors. The
cases tactic can be used to exploit injectivity to simplify equations in which both
sides have the same constructor applied. In the proof below, the equation before
simplification is x :: xs = y :: ys:

theorem injection_example {α : Type} (x y : α) (xs ys : List α)
(h : x :: xs = y :: ys) :

x = y ∧ xs = ys :=
by

cases h
simp

The cases tactic replaces y by x and ys by xs throughout the goal, yielding the
subgoal

⊢⊢⊢ x = x ∧ xs = xs

which simp can easily prove.
The cases tactic is also useful when the constructors are different, to detect

the impossible case:
theorem distinctness_example {α : Type} (y : α) (ys : List α)

(h : [] = y :: ys) :
false :=
by cases h

Next, we define the map function on lists: a function that applies its argument
f—which is itself a function—to all elements stored in a container.

def map {α β : Type} (f : α → β) : List α → List β

| [] => []
| x :: xs => f x :: map f xs

Notice that because f does not change in the recursive call, we put it as a parame-
ter of the entire definition. The alternative, which is the only option for arguments
that change in recursive calls, would be as follows:

def mapArgs {α β : Type} : (α → β) → List α → List β

| _, [] => []
| f, x :: xs => f x :: mapArgs f xs

A basic property of map functions is that they have no effect if their argument
is the identity function (fun x 7→ x):

theorem map_ident {α : Type} (xs : List α) :
map (fun x 7→ x) xs = xs :=
by

induction xs with
| nil => rfl
| cons x xs’ ih => simp [map, ih]
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Another basic property is that successive maps can be compressed into a sin-
gle map, whose argument is the composition of the functions involved:

theorem map_comp {α β γ : Type} (f : α → β) (g : β → γ)
(xs : List α) :

map g (map f xs) = map (fun x 7→ g (f x)) xs :=
by

induction xs with
| nil => rfl
| cons x xs’ ih => simp [map, ih]

When introducing new operations, it is useful to show how these behave when
used in combination with other operations. Here is an example:

theorem map_append {α β : Type} (f : α → β)
(xs ys : List α) :

map f (xs ++ ys) = map f xs ++ map f ys :=
by

induction xs with
| nil => rfl
| cons x xs’ ih => simp [map, ih]

Remarkably, the last three proofs are textually identical. These are typical
induction–rfl–simp proofs.

The next list operation removes the first element of a list, returning the tail:
def tail {α : Type} : List α → List α

| [] => []
| _ :: xs => xs

For [], we simply return [] as its own tail.
The counterpart of tail is a function that extracts the first element of a list.

We already reviewed one solution in Section 5.6, using the Inhabited type class.
Another possible definition uses an Option wrapper:

def headOpt {α : Type} : List α → Option α

| [] => Option.none
| x :: _ => Option.some x

The type Option α has two constructors: Option.none and Option.some a, where
a : α. We use Option.none when we have no meaningful value to return and
Option.some otherwise. We can think of Option.none as the null pointer of func-
tional programming, but unlike null pointers (and null references), the type sys-
tem guards against unsafe dereferences. To retrieve the value stored in an Option,
we must pattern-match. Schematically:

match headOpt xs with
| Option.none => handleTheError
| Option.some x => doSomethingWithValue x

We cannot simply write doSomethingWithValue (headOpt xs), because this would
be type-incorrect. The type system forces us to think about error handling.

Using the power of dependent types, another way to implement a partial func-
tion is to specify a precondition. The caller must then pass a proof that the pre-
condition is satisfied as argument:
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def headPre {α : Type} : (xs : List α) → xs ̸= [] → α

| [], hxs => by simp at *
| x :: _, hxs => x

The headPre function takes two explicit arguments. The first argument, xs, is a list.
The second argument, hxs, is a proof of xs ̸= []. Since the type xs ̸= [] of the sec-
ond argument depends on the first argument, we must use the dependent type
syntax (xs : List α)→ rather than List α→ so that we can name the first argu-
ment. The result of the function is a value of type α; thanks to the precondition,
there is no need for an Option wrapper.

The second argument is used to rule out the case where xs is []. In that case,
the argument (called hxs) is a proof of [] ̸= [], which is impossible. The proof de-
rives a contradiction and exploits it to derive an arbitrary α. From a contradiction,
we can derive anything, even an inhabitant of α.

We can then invoke the function as follows:

#eval headPre [3, 1, 4] (by simp)

This prints 3. The second argument, by simp, is a proof that [3, 1, 4] is not [].
Let us move on. Given two lists [x1, . . ., xn] and [y1, . . ., yn] of the same

length, the zip operation constructs a list of pairs [(x1, y1), . . ., (xn, yn)]:

def zip {α β : Type} : List α → List β → List (α × β)
| x :: xs, y :: ys => (x, y) :: zip xs ys
| [], _ => []
| _ :: _, [] => []

The function is also defined if one list is shorter than the other. For example, zip
[a, b, c] [x, y] = [(a, x), (b, y)]. Notice that the recursion, with three cases,
deviates slightly from the structural recursion schema.

The length of a list is defined by recursion:

def length {α : Type} : List α → N
| [] => 0
| x :: xs => length xs + 1

We can say something interesting about the length of zip’s result—namely, it is
the minimum of the lengths of the two input lists:

theorem length_zip {α β : Type} (xs : List α) (ys : List β) :
length (zip xs ys) = min (length xs) (length ys) :=
by

induction xs generalizing ys with
| nil => simp [min, length]
| cons x xs’ ih =>

cases ys with
| nil => rfl
| cons y ys’ => simp [zip, length, ih ys’, min_add_add]

The proof above teaches us yet another trick. The induction hypothesis is

ih : ∀ys : list β, length (zip xs ys) = min (length xs) (length ys)

Why is there a ∀ quantifier? The induction xs generalizing ys tactic generalized
the theorem statement so that the induction hypothesis is not restricted to some
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fixed ys as the proof goal but can be used for arbitrary values of ys. Such flexibility
is needed here because we want to instantiate the quantifier with ys’s tail (called
ys’) and not with ys itself.

The proof relies on a theorem about the min function that we need to prove
ourselves:

theorem min_add_add (l m n : N) :
min (m + l) (n + l) = min m n + l :=
by

cases Classical.em (m ≤ n) with
| inl h => simp [min, h]
| inr h => simp [min, h]

Recall the definition min a b = (if a ≤ b then a else b). To reason about min, we
often need to perform a case distinction on the condition a ≤ b. This is achieved
using cases Classical.em (a ≤ b). This creates two subgoals: one with a ≤ b as
a hypothesis and one with ¬ a ≤ b.

Here are two different ways to perform a case distinction on a proposition in
a structured proof:

theorem min_add_add_match (l m n : N) :
min (m + l) (n + l) = min m n + l :=
match Classical.em (m ≤ n) with
| Or.inl h => by simp [min, h]
| Or.inr h => by simp [min, h]

theorem min_add_add_if (l m n : N) :
min (m + l) (n + l) = min m n + l :=
if h : m ≤ n then

by simp [min, h]
else

by simp [min, h]

We see again that the mechanisms that are available to write functional pro-
grams, such as match and if–then–else, are also available for writing structured
proofs (which are, after all, terms). We can now add a few rows to the table pre-
sented at the end of Section 4.7:

Tactical proof Structured proof Raw proof term

cases t match t with . . . match t with . . .
cases Classical.em Q if Q then . . . else . . . if Q then . . . else . . .

We conclude with a distributivity law about map and zip, expressed using the
Prod.fst and Prod.snd selectors on pairs:

theorem map_zip {α α’ β β’ : Type} (f : α → α’)
(g : β → β’) :
∀xs ys,

map (fun ab : α × β 7→ (f (Prod.fst ab), g (Prod.snd ab)))
(zip xs ys) =

zip (map f xs) (map g ys)
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| x :: xs, y :: ys => by simp [zip, map, map_zip f g xs ys]
| [], _ => by rfl
| _ :: _, [] => by rfl

The patterns on the left correspond exactly to the patterns used in the definition
of zip. This is simpler than performing the induction on xs and the case distinc-
tion on ys separately, as we did when we proved length_zip. Good proofs often
follow the structure of the definitions they are based on.

In the definition of zip and in the proof of map_zip, we were careful to specify
three nonoverlapping patterns. It is also possible to write equations with overlap-
ping patterns, as in

def f {α : Type} : List α → · · ·
| [] => . . .
| xs => . . . xs . . .

Since the patterns are applied sequentially, the above command defines the same
function as

def f {α : Type} : List α → · · ·
| [] => . . .
| x :: xs => . . . (x :: xs) . . .

We generally recommend the latter, more explicit style, because it leads to fewer
surprises.

5.8 Binary Trees

Inductive types with constructors taking several recursive arguments define tree-
like objects. Binary trees have nodes with at most two children. A possible defini-
tion of binary trees follows:

inductive BTree (α : Type) : Type where
| empty : BTree α

| node : α → BTree α → BTree α → BTree α

With binary trees, structural induction produces two induction hypotheses, one
for each suBTree of an inner node. To prove a goal t : BTree α ⊢ P[t] by struc-
tural induction on t, we need to show the subgoals

⊢⊢⊢ P[BTree.empty]

a : α, l r : BTree α, ih_l : P[l], ih_r : P[r] ⊢⊢⊢ P[BTree.node a l r]

The tree counterpart to list reversal is the mirror operation:

def mirror {α : Type} : BTree α → BTree α

| BTree.empty => BTree.empty
| BTree.node a l r => BTree.node a (mirror r) (mirror l)

Mirroring can be defined directly, without appealing to some append opera-
tion. As a result, reasoning about mirror is simpler than reasoning about reverse,
as we can see below:
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theorem mirror_mirror {α : Type} (t : BTree α) :
mirror (mirror t) = t :=
by

induction t with
| empty => rfl
| node a l r ih_l ih_r => simp [mirror, ih_l, ih_r]

A more detailed informal proof would be as follows:

The proof is by structural induction on t.
Case BTree.empty: We must show that mirror (mirror BTree.empty)
= BTree.empty. This follows directly from the definition of mirror.
Case BTree.node a l r: The induction hypotheses are

(ih_l) mirror (mirror l) = l (ih_r) mirror (mirror r) = r

We must show mirror (mirror (BTree.node a l r)) = BTree.node a l
r. We have
mirror (mirror (BTree.node a l r))

= mirror (BTree.node a (mirror r) (mirror l)) (by def. of mirror)
= BTree.node a (mirror (mirror l)) (mirror (mirror r)) (ditto)
= BTree.node a l (mirror (mirror r)) (by ih_l)
= BTree.node a l r (by ih_r)
x ⊓⊔

To achieve the same level of detail in the Lean proof, we could use a calculational
block (Section 4.4) instead of simp:

theorem mirror_mirror_calc {α : Type} :
∀t : BTree α, mirror (mirror t) = t
| BTree.empty => by rfl
| BTree.node a l r =>

calc
mirror (mirror (BTree.node a l r))
= mirror (BTree.node a (mirror r) (mirror l)) :=

by rfl
_ = BTree.node a (mirror (mirror l))

(mirror (mirror r)) :=
by rfl

_ = BTree.node a l (mirror (mirror r)) :=
by rw [mirror_mirror_calc l]

_ = BTree.node a l r :=
by rw [mirror_mirror_calc r]

The following theorem will be useful in Chapter 6:

theorem mirror_Eq_empty_Iff {α : Type} :
∀t : BTree α, mirror t = BTree.empty ↔ t = BTree.empty
| BTree.empty => by simp [mirror]
| BTree.node _ _ _ => by simp [mirror]



72 Chapter 5. Functional Programming

5.9 Cases Tactic

cases

cases term
[
with

| constructor1 names1 => tactics1
...

| constructorn namesn => tacticsn
]

The cases tactic performs a case distinction on the specified term. This gives rise
to as many subgoals as there are constructors in the definition of the term’s type.
The tactic behaves roughly the same as induction except that it does not pro-
duce induction hypotheses and it automatically excludes impossible cases. The
optional names names1, . . . , namesn are used for any emerging variables or hy-
potheses.

cases hypothesis-of-the-form-l-equals-r

The cases tactic can also be used on a hypothesis h of the form l = r. It matches
r against l and replaces all occurrences of the variables occurring in r with the
corresponding terms in l everywhere in the goal. The remaining hypothesis l = l
can be removed using clear h if desired.

cases Classical.em (proposition) with
| inl name-if-true => tactics-if-true
| inr name-if-false => tactics-if-false

The cases tactic can also be used to perform a case distinction on a proposition.
Two cases emerge: one in which the proposition is true and one in which it is
false. The optional names name-if-true and name-if-false are used for the
hypothesis in the true and false cases, respectively.

5.10 Dependent Inductive Types

The inductive types List α and BTree α fall within the simply typed fragment of
Lean. Inductive types may also depend on (non-type) terms. A typical example is
the type of lists of length n, or vectors:

inductive Vec (α : Type) : N → Type where
| nil : Vec α 0
| cons (a : α) {n : N} (v : Vec α n) : Vec α (n + 1)

Thus, the term Vec.cons 3 (Vec.cons 1 Vec.nil) has type Vec N 2. By encoding
the vector length in the type, we can provide more precise information about
the result of functions. A function such as Vec.reverse, which reverses a vector,
would map a value Vec α n to another value of the same type, with the same n. And
Vec.zip could require its two arguments to have the same length. Fixed-length
vectors and matrices are also useful in mathematics.

Unfortunately, this more precise information comes at a cost. Dependent in-
ductive types cause difficulties when the terms they depend on are provably equal
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but not syntactically equal up to computation (e.g., m + n vs. n + m). In this guide,
we will generally avoid dependent inductive types. They are briefly covered in this
section for completeness. To put it unambiguously: This is not exam material.

The definitions below introduce conversions between lists and vectors:

def listOfVec {α : Type} : ∀{n : N}, Vec α n → List α

| _, Vec.nil => []
| _, Vec.cons a v => a :: listOfVec v

def vecOfList {α : Type} :
∀xs : List α, Vec α (List.length xs)
| [] => Vec.nil
| x :: xs => Vec.cons x (vecOfList xs)

The listOfVec conversion takes a type α, a length n, and a vector of length
n over α as arguments and returns a list over α. Although we do not care about
the length n, it still needs to be an argument because it appears in the type of the
third argument. We make the first two arguments, α and n, implicit since they can
be inferred from the type of the third argument.

The vecOfList conversion takes a type α and a list over α as arguments and re-
turns a vector of the same length as the list. Lean’s type checker is strong enough
to determine that the two right-hand sides have the desired type.

By the PAT principle, proofs are analogous to function definitions. Let us verify
that converting a vector to a list preserves its length:

theorem length_listOfVec {α : Type} :
∀(n : N) (v : Vec α n), List.length (listOfVec v) = n
| _, Vec.nil => by rfl
| _, Vec.cons a v =>

by simp [listOfVec, length_listOfVec _ v]

To prove a goal v : Vec α n ⊢ P[v] by structural induction on v, we might
naively think that it suffices to show the following two subgoals:

⊢⊢⊢ P[Vec.nil]

m : N, a : α, u : Vec α m, ih : P[u] ⊢⊢⊢ P[Vec.cons a u]

This is naive because the subgoals are not even type-correct: The hole in P[ ] has
type Vec α n (the type of its original dweller, v), so we cannot simply plug Vec.nil,
u, or Vec.cons a u—which have types Vec α 0, Vec α m, and Vec α (m + 1)—into
that hole. We must massage P each time, replacing n with 0, m, or m + 1. Using the
notation Pt[ ] for the variant of P[ ] where all occurrences of n are replaced by
term t, we get

⊢⊢⊢ P0[Vec.nil]

m : N, a : α, u : Vec α m, ih : Pm[u] ⊢⊢⊢ Pm+1[Vec.cons a u]

Proofs by case distinction using the cases tactic are similar, but without the
induction hypothesis. Often, the length n will be not a variable but a complex
term. Then the replacement of n in P[ ] might not be intuitively meaningful. With
cases, the corresponding subgoal is silently eliminated. Thus, a case distinction
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on a value of type Vec α 0 will yield only one subgoal, of the form ⊢ P[Vec.nil],
since 0 could never be equal to a term of the form m + 1.

Dependently typed pattern matching is subtle, because the type of the value
we match on may change according to the constructor. Given v : Vec α n, we might
be tempted to write

match v with
| Vec.nil => . . .
| Vec.cons a u => . . .

but this is just as naive as our first induction proof attempt above. Since the term
n in the type Vec α n may change depending on the constructor, we must pattern-
match on n as well:

match n, v with
| 0, Vec.nil => . . .
| m + 1, Vec.cons a u => . . .

Showing the implicit arguments, we have

match n, v with
| 0, @Vec.nil α => . . .
| m + 1, @Vec.cons α a m u => . . .

Often, it is sufficient to put placeholders in the first column:

match n, v with
| _, Vec.nil => . . .
| _, Vec.cons a u => . . .

It may seem paradoxical to pattern-match on n only to ignore the result, but with-
out it Lean cannot infer the second implicit argument of Vec.cons. In this respect,
cases is more user-friendly than match.

5.11 Summary of New Lean Constructs

Declarations

class declares a structure type as a type class
instance declares a structure value as a type class instance
structure introduces a structure type and its selectors

Expressions

if . . . then . . . else performs a case distinction on a decidable proposition
match . . . with performs pattern matching

Tactic

cases performs a case distinction
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Inductive Predicates

Inductive predicates, or inductively defined propositions, are a convenient way to
specify functions of type · · · → Prop. They are reminiscent of formal systems (Sec-
tion 1.3) and of Prolog-style logic programming. But Lean offers a much stronger
logic than Prolog, so we need to do some work to establish theorems instead of
just running the Prolog interpreter. A possible view of Lean:

Lean = functional programming + logic programming + more logic

6.1 Introductory Examples

Unless you have been exposed to Prolog or logic programming, you will proba-
bly wonder what inductive predicates are and why they are useful. We start by
reviewing three examples that demonstrate the variety of uses: even numbers,
tennis games, and the reflexive transitive closure.

6.1.1 Even Numbers

Mathematicians often define sets as the smallest set that meets some criteria.
Consider this definition:

The set E of even natural numbers is defined as the smallest set S
closed under the following rules:

(1) 0 ∈ S;

(2) for every k ∈ N, if k ∈ S, then k + 2 ∈ S.

Such a set exists by the Knaster–Tarski theorem.

(The last sentence is often left implicit.) It is easy to convince ourselves that E
contains all the even numbers and only those. Let us put on our mathematician’s
hat and prove that 4 is even:

By rule (1), we have 0 ∈ E.

Hence, by rule (2) (with k := 0), we have 2 ∈ E.

Thus, by rule (2) (with k := 2), we have 4 ∈ E, as desired. ⊓⊔

75
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By contrast, computer scientists might use a formal system consisting of two
derivation rules to specify the same set:

Zero
0 ∈ E

k ∈ E
AddTwokk + 2 ∈ E

A proof is then a derivation tree:

Zero
0 ∈ E

AddTwo0
2 ∈ E

AddTwo2
4 ∈ E

The proof is forward if we read it downwards and backward if we read it upwards.
Inductive predicates are the logicians’ way to achieve the same result. In Lean,

instead of a set, we would define a characteristic predicate inductively:

inductive Even : N → Prop where
| zero : Even 0
| add_two : ∀k : N, Even k → Even (k + 2)

This should look familiar. We have used the same syntax, except with Type instead
of Prop, to define inductive types. Inductive types and inductive predicates are
provided by the same mechanism in Lean, in accordance with the PAT principle.

The command above defines a unary predicate Even as well as two introduc-
tion rules Even.zero and Even.add_two that can be used to prove goals of the
form ⊢ Even . . . . Recall that an introduction rule for a symbol (e.g., Even) is a the-
orem whose conclusion contains that symbol (Section 4.3). By the PAT principle,
Even n can be viewed as a dependent inductive type like Vec α n (Section 5.10),
and Even.zero and Even.add_two as constructors like Vec.nil and Vec.cons.

If we translate the Lean definition back into English, we get something similar
to the Knaster–Tarski-style definition above:

The following clauses define the even numbers.

(1) 0 is even;
(2) any number of the form k + 2 is even, if k is even.

Any other number is not even.

It is worth nothing that inductively defined symbols have no definition. Thus,
we cannot unfold their definition using simp, any more than we can unfold the defi-
nition of an inductive type such as List α. The only reasoning principles available
are introduction and elimination.

As a warm-up exercise, here is a proof of Even 4:

theorem Even_4 :
Even 4 :=
have Even_0 : Even 0 :=

Even.zero
have Even_2 : Even 2 :=
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Even.add_two _ Even_0
show Even 4 from

Even.add_two _ Even_2

For example, the proof term Even.add_two _ Even_0 has type Even (0 + 2), which
is syntactically equal to Even 2 up to computation and hence equal from the type
checker’s point of view. The underscore stands for 0.

Thanks to the “no junk” guarantee of inductive definitions, Even.zero and
Even.add_two are the only two ways to construct proofs of ⊢ Even . . . . By inspec-
tion of the conclusions Even 0 and Even (k + 2), we see that there is no danger of
ever proving that 1 is even.

Another way to view the inductive definition above is as follows: The first line
introduces a predicate, whereas the second and third lines introduce axioms we
want the predicate to satisfy. Accordingly, we could have written

opaque Even : N → Prop
axiom Even.zero : Even 0
axiom Even.add_two : ∀k : N, Even k → Even (k + 2)

replacing inductive by opaque and | by axiom. But this axiomatic version, apart
from being dangerous, does not give us any information about when Even is false.
We cannot use it to prove ¬ Even 1 or ¬ Even 17. For all we know, Even could be
true for all natural numbers. In contrast, the inductive definition guarantees that
we obtain the least (i.e., the most false) predicate that satisfies the introduction
rules Even.zero and Even.add_two, and provides elimination and induction prin-
ciples that allow us to prove ¬ Even 1, ¬ Even 17, or ¬ Even (2 * n + 1).

Why should we bother with inductive predicates when we can define recursive
functions? Indeed, the following definition is perfectly legitimate:

def evenRec : N → Bool
| 0 => true
| 1 => false
| k + 2 => evenRec k

Each style has its strengths and weaknesses. The recursive version forces us to
specify a false case (the second equation), and it forces us to worry about termi-
nation. On the other hand, because it is equational and computational, it works
well with rfl, simp, #reduce, and #eval. The inductive version is arguably more
abstract and elegant. Each introduction rule is stated independently. We can add
or remove rules without having to think about termination or executability.

Yet another way to define Even is as a nonrecursive definition, using the mod-
ulo operator (%):

def evenNonrec (k : N) : Prop :=
k % 2 = 0

Mathematicians would likely prefer this version. But the inductive version is a
convenient “Hello, World!” example that resembles many realistic inductive defi-
nitions. It might be a toy, but it is a useful toy.

6.1.2 Tennis Games

Transition systems consists of transition rules that connect a “before” and an “af-
ter” state. As a specimen of a transition system, we consider the possible transi-
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tions in a game of tennis, starting from 0–0 (“Love all”). Tennis games are also a
toy, but in Chapter 9, we will define the semantics of an imperative programming
language as a transition system in a similar style.

The scoring rules for tennis from the International Tennis Federation’s Rules
of Tennis are reproduced below.

A standard game is scored as follows with the server’s score being
called first:

No point – “Love”
First point – “15”
Second point – “30”
Third point – “40”
Fourth point – “Game”

except that if each player/team has won three points, the score is
“Deuce.” After “Deuce,” the score is “Advantage” for the player/team
who wins the next point. If that same player/team also wins the next
point, that player/team wins the “Game”; if the opposing player/team
wins the next point, the score is again “Deuce.” A player/team needs
to win two consecutive points immediately after “Deuce” to win the
“Game.”

We first define an inductive type to represent scores:

inductive Score : Type where
| vs : N → N → Score
| advServ : Score
| advRecv : Score
| gameServ : Score
| gameRecv : Score

A score such as 30–15 is represented as Score.vs 30 15, which we will also write
in infix notation as 30–15. We ignore some of the most frivolous aspects of the
scoring rules, writing 0 for “Love” and 40–40 for “Deuce.” If we really cared, we
could introduce aliases such as def love : N := Score.vs 0 0.

The next stage is to introduce a binary predicate Step that determines whether
a transition is possible:

inductive Step : Score → Score → Prop where
| serv_0_15 : ∀n, Step (0–n) (15–n)
| serv_15_30 : ∀n, Step (15–n) (30–n)
| serv_30_40 : ∀n, Step (30–n) (40–n)
| serv_40_game : ∀n, n < 40 → Step (40–n) Score.gameServ
| serv_40_adv : Step (40–40) Score.advServ
| serv_adv_40 : Step Score.advServ (40–40)
| serv_adv_game : Step Score.advServ Score.gameServ
| recv_0_15 : ∀n, Step (n–0) (n–15)
| recv_15_30 : ∀n, Step (n–15) (n–30)
| recv_30_40 : ∀n, Step (n–30) (n–40)
| recv_40_game : ∀n, n < 40 → Step (n–40) Score.gameRecv
| recv_40_adv : Step (40–40) Score.advRecv
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| recv_adv_40 : Step Score.advRecv (40–40)
| recv_adv_game : Step Score.advRecv Score.gameRecv

Let s ; t abbreviate Step s t. A game is a chain s0 ; s1 ; s2 ; · · · ; sn where
s0 = 0–0 and no transition is possible from sn. The predicate allows nonsensical
transitions such as 15–99 ; 30–99, but since the score 15–99 cannot be reached
from 0–0, these transitions are harmless.

Equipped with a formal definition, we can ask, and formally answer, questions
such as: Do games have a maximal length? How many different final scores are
possible? Is the score 15–99 reachable from “Love all”? And can the score ever
return to 0–0? Let us use Lean to disprove the last claim:

theorem no_Step_to_0_0 (s : Score) :
¬ s ; 0–0 :=
by

intro h
cases h

The diagram below summarizes which scores are reachable from which scores:

40–15

30–0

40–0 15–30

30–40

0–15

0–40

0–0

15–0

Score.advRecv

Score.gameRecv

Score.advServ

Score.gameServ

15–40

0–30

40–30

40–40

30–15

30–30

15–15

6.1.3 Reflexive Transitive Closure

Are there any convincing non-toy applications of inductive predicates? The answer
is yes. Consider the reflexive transitive closure r∗ of a binary relation r. Informally,
r∗ is the relation that represents zero or more steps of r. For example, if r corre-
sponds to taking one transition in a transition system (e.g., an automaton), then
r∗ corresponds to taking any number of steps, including zero. For a more concrete
example, consider the following:

r = {(1, 2), (2, 4), (4, 8)}
r∗ = {(n,n) | n ∈ N} ∪ {(1, 2), (1, 4), (1, 8), (2, 4), (2, 8), (4, 8)}

The star (∗) operator is often defined rigorously as a formal system:

(a, b) ∈ r
Base

(a, b) ∈ r∗
Refl

(a, a) ∈ r∗
(a, b) ∈ r∗ (b, c) ∈ r∗

Trans
(a, c) ∈ r∗
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These rules define r∗ as the smallest relation that contains r (by Base) and that is
reflexive (by Refl) and transitive (by Trans). If we wanted to define the transitive
closure r+ instead, we would simply omit the Refl rule. If we wanted the reflexive
symmetric closure, we would replace the Trans rule by a Symm rule. With a formal
system, we simply declare the properties we want to be true, without giving a
thought to termination or executability.

It is straightforward to translate the above derivation rules into introduction
rules of an inductive predicate:

inductive Star {α : Type} (R : α → α → Prop) : α → α → Prop
where

| base (a b : α) : R a b → Star R a b
| refl (a : α) : Star R a a
| trans (a b c : α) : Star R a b → Star R b c → Star R a c

We represent relations as binary predicates rather than sets of pairs, writing R a b
for (a, b) ∈ R. Relations and predicates are interchangeable, but predicates are
often more convenient to use in a proof assistant. The reflexive transitive closure
of R is written Star R. Notice that a, b, and c are declared as parameters of the
introduction rules, on the left of the colons. We could also have written

| base : ∀a b : α, R a b → Star R a b

or at the other extreme

| base (a b : α) (hab : R a b) : Star R a b

All these forms are logically and operationally equivalent.
The general format of inductive predicates is as follows:

inductive predicate-name (params1 : type1) . . . (paramsk : typek) :
typek+1 → · · · → typek+p → Prop where
| rule-name1 (params11 : type11) . . . (params1m1 : type1m1) :

proposition1...
| rule-namen (paramsn1 : typen1) . . . (paramsnmn : typenmn) :

propositionn

where the conclusion of each propositionj must be an application of the defined
predicate predicate-name to some arguments. These arguments may be arbitrary
terms; they do not need to be constructor patterns. We can also use curly braces
{ } instead of parentheses ( ) if we want to make the arguments corresponding
to the parameters implicit.

The above definition of Star is truly elegant. If you still doubt this, try imple-
menting it as a recursive function:

def starRec {α : Type} (R : α → α → Bool) :
α → α → Bool :=

To summarize, each introduction rule of an inductive predicate P consists of
the following components, from left to right:

a name;
variables that may appear in the rule;
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zero or more conditions that must be fulfilled, which may apply P recursively;
an application of P to some arguments, forming a pattern.

Accordingly, for rule Star.base, the pattern is Star R a b, the condition is R a b,
and the variables are a and b.

6.1.4 A Nonexample

Not all inductive definitions admit a least solution. The simplest nonexample is

-- fails
inductive Illegal : Prop where
| intro : ¬ Illegal → Illegal

If Lean accepted this definition, we could use it to prove the equivalence Illegal
↔ ¬ Illegal, from which we could easily derive False. Fortunately, Lean rejects
the definition:

arg #1 of ’Illegal.intro’ has a non positive occurrence of
the datatypes being declared

The nonpositive occurrence it complains about is the occurrence of Illegal under
a negation. Mathematicians would reject the definition on the ground that the
monotonicity condition of the Knaster–Tarski theorem is not satisfied.

6.2 Logical Symbols

Although Even is the first openly inductive predicate in this guide, the earlier chap-
ters already presented other inductive predicates clandestinely. The very first of
these is equality (=), introduced in Chapter 2, followed by the logical symbols ∧,
∨,↔, ∃, True, and False. Their definitions are worth studying closely:

inductive And (a b : Prop) : Prop where
| intro : a → b → And a b

inductive Or (a b : Prop) : Prop where
| inl : a → Or a b
| inr : b → Or a b

inductive Iff (a b : Prop) : Prop where
| intro : (a → b) → (b → a) → Iff a b

inductive Exists {α : Type} (P : α → Prop) : Prop where
| intro : ∀a : α, P a → Exists P

inductive True : Prop where
| intro : True

inductive False : Prop where

inductive Eq {α : Type} : α → α → Prop where
| refl : ∀a : α, Eq a a
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(Strictly speaking, in Lean, some of the above definitions are actually structures
and not inductive predicates, but the difference is unimportant: As we saw in
Section 5.5, structures are essentially single-constructor inductive predicates with
some syntactic sugar.)

The traditional notations ∃x : α, P and x = y are syntactic sugar for Exists
(fun x : α 7→ P) and Eq x y. Notice how fun acts as an all-purpose binder. Notice
also that there is no constructor for False. There are no proofs of False, just like
there is no proof of Even 1. With inductive predicates, we state only the rules we
want to be true.

The symbol ∀, including its special case→, is built directly into the logic and
is not defined as an inductive predicate. Nor does it have explicit introduction or
elimination rules. The introduction principle is the anonymous function fun x 7→
_, and the elimination principle is function application _ u.

As for any inductive predicates, only the introduction rules are specified. The
elimination rules presented in Sections 3.3 and 3.4 must be derived manually.

6.3 Rule Induction

In the same way that we can perform an induction on a term of inductive type,
we can perform an induction on a proof of an inductive predicate. For example,
given the goal h : Even n ⊢ P n, we can invoke induction h and get two subgoals,
for Even.zero and Even.add_two. This is called induction on the structure of the
derivation of h or simply rule induction, because the induction is on the predi-
cate’s introduction rules (i.e., the constructors of the proof term).

There are two ways to look at rule induction: the “least-predicate-such-that
view” and the “PAT view.” To understand the least-predicate-such-that view, recall
that an inductive definition introduces a symbol as the least (i.e., the most false)
predicate satisfying the introduction rules. Accordingly, Even is the least predicate
Q such that the properties Q 0 and ∀k, Q k→ Q (k + 2) hold. Therefore, if we can
show that P 0 and ∀k, P k→ P (k + 2) hold for some predicate P, then P is either
Even itself or greater than (i.e., more true than) Even. As a result, Even n implies
P n, which is exactly what we need to prove the goal h : Even n ⊢ P n.

The least-predicate-such-that view gives a nice intuitive account of rule in-
duction that can be used in informal arguments, such as the following proof that
Even n implies n % 2 = 0 for all n:

The proof is by rule induction on the hypothesis Even n.
Case Even.zero: We must show 0 % 2 = 0. This follows by computation.
Case Even.add_two k: The induction hypothesis is k % 2 = 0. We must
show (k + 2) % 2 = 0. This follows by basic arithmetic reasoning. ⊓⊔

The Lean proof has the same structure:

theorem mod_two_Eq_zero_of_Even (n : N) (h : Even n) :
n % 2 = 0 :=
by

induction h with
| zero => rfl
| add_two k hk ih => simp [ih]
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The PAT principle gives us another fruitful way to look at rule induction. The
key idea is that rule induction on h in a goal such as h : Even n ⊢ P[h] is perfectly
analogous to structural induction on a value of a dependent inductive type such
as Vec α n (Section 5.10). Writing Pu[ ] for the variant of P[ ] where n is replaced
by some term u, we get the subgoals

⊢⊢⊢ P0[Even.zero : Even 0]

k : N, hk : Even k, ih : Pk[hk] ⊢⊢⊢ Pk+2[Even.add_two k hk : Even (k + 2)]

These are effectively the subgoals produced by the induction tactic.
Regardless of the inductive predicate Q, the procedure to compute the sub-

goals is always the same:
1. Replace h in P[h] with each possible introduction rule applied to fresh vari-

ables (e.g., Even.add_two k hk), instantiating n in P[ ] to make P[ ] type-
correct. This yields as many subgoals as there are introduction rules.

2. Add these new variables (e.g., k, hk) to the local context.
3. Add induction hypotheses for all new hypotheses that assert Q . . . .
Notice the presence of hk : Even k among the hypotheses above. It was absent

in the least-predicate-such-that view and is not essential because it can always
be recovered by strengthening P to be of the form Even n ∧ · · · .

In nearly all practical cases, h will not occur in P[h]. We can then simply write

⊢⊢⊢ P0 k : N, hk : Even k, ih : Pk ⊢⊢⊢ Pk+2

In rare cases, h will occur in P[h]. Proofs may appear as subterms in arbitrary
terms, as we saw when we tried to extract the head of a list in Section 5.7.

The reflexive transitive closure Star R is similar to Even. Given a goal h : Star R
x y ⊢ P, rule induction on h produces the following subgoals, where Pt,u denotes
the variant of P where x and y are replaced by t and u, respectively:

a b : α, hab : R a b ⊢⊢⊢ Pa,b
a : α ⊢⊢⊢ Pa,a

a b c : α, hab : Star R a b, hbc : Star R b c, ihab : Pa,b, ihbc : Pb,c ⊢⊢⊢ Pa,c

This is where the “assistant” aspect of “proof assistant” comes into play. One of
the key properties of Star is idempotence—applying Star to Star R has no effect.
This can be proved as follows in Lean, using rule induction for the→ direction of
the equivalence:

theorem Star_Star_Iff_Star {α : Type} (R : α → α → Prop)
(a b : α) :

Star (Star R) a b ↔ Star R a b :=
by

apply Iff.intro
{ intro h

induction h with
| base a b hab => exact hab
| refl a => apply Star.refl
| trans a b c hab hbc ihab ihbc =>



84 Chapter 6. Inductive Predicates

apply Star.trans a b
{ exact ihab }
{ exact ihbc } }

{ intro h
apply Star.base
exact h }

We are careful to give intuitive names to the emerging variables. It is easy to get
lost in goals containing long, automatically generated names. The cleanup tactics
introduced in Section 3.8 can also be of help when we face large goals.

We can state the idempotence property more standardly in terms of equality
instead of as an equivalence:

@[simp] theorem Star_Star_Eq_Star {α : Type}
(R : α → α → Prop) :

Star (Star R) = Star R :=
by

apply funext
intro a
apply funext
intro b
apply propext
apply Star_Star_Iff_Star

The proof uses two theorems that are available because Lean’s logic is classical:

funext : (∀x, ?f x = ?g x)→ ?f = ?g
propext : (?a↔ ?b)→ ?a = ?b

Functional extensionality (funext) states that if two functions yield equal results
for all inputs, then the two functions must be equal. Propositional extensional-
ity (propext) states that equivalence of propositions coincides with equality. In
these phrases, extensionality means something like “what you see is what you
get.” These properties may seem obvious, and yet there exist proof assistants
built on weaker, intuitionistic logics in which the properties do not generally hold.

We register the theorem Star_Star_Eq_Star as a simp rule, because viewed
as a left-to-right rewrite rule, it genuinely replaces a complex term by a simpler
term. It is hard to imagine a situation where we would not want simp to rewrite
Star (Star . . .) to Star . . . .

For rule induction, we use the induction tactic. For subtle logical reasons
that will become clearer in Chapter 12, rule induction by pattern matching and
recursion is not allowed.

In Section 5.4, we saw a diagram depicting the interpretation of Bool and Prop
side by side. The diagram suggested the existence of an infinite number of propo-
sitions, but we now know that there are exactly two propositions: False and True.
Here is a revised diagram:

Bool: · · Prop: ···
We see that there are only two propositions, one which has no proofs and one
which has a number of proofs. Three proofs are shown in the diagram.
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6.4 Linear Arithmetic Tactic

linarith

The linarith tactic can be used to prove goals involving linear arithmetic equal-
ities (=), inequalities (<, >, ≤, and ≥), and disequalities ( ̸=). Linear means that
multiplication and division do not occur, or if they do then one of the operands
must be a numeric constant. For example, 2 * x < y is a linear constraint (which
can be rewritten to x + x < y), whereas x * y < y is nonlinear.

6.5 Elimination

Given an inductive predicate Q, its introduction rules typically are of the form
∀. . ., · · · → Q . . . and can be used to prove goals of the form ⊢ Q . . . . Elimination
works the other way around: It extracts information from a theorem or hypothesis
h : Q . . . . Elimination takes many forms: the cases and induction tactics, pattern
matching, and elimination rules (e.g., And.left).

Invoked on h : Q . . . , the cases h tactic performs roughly the same rule induc-
tion as induction h but without producing any induction hypotheses. We encoun-
tered two idioms in Chapter 5 that we can finally understand.

The first idiom is when h is of the form l = r—i.e., Eq l r (Section 6.2). Suppose
the goal is h : l = r ⊢ P[h]. The procedure presented in Section 6.3 produces the
subgoal

a : α ⊢⊢⊢ Pa,a[Eq.refl a : a = a]

in which Pt,u[ ] stands for the variant of P[ ] where l and r are replaced by t
and u, respectively. (Strictly speaking, the useless hypothesis h : a = a would also
appear in the subgoal.) In practice, P[h] would likely not depend on h. Moreover,
cases reuses the name l instead of using a different name like a. Thus, we would
get

l : α ⊢⊢⊢ Pl,l

In other words, all occurrences of r in the original goal have been replaced by l.
This corresponds to the behavior we observed in Section 5.7.

The second idiom is the tactic cases Classical.em Q, where Q is a proposition.
The Classical.em Q part is a proof term for Q ∨ ¬ Q—i.e., Or Q (¬ Q) (Section 6.2).
Then cases is applied to eliminate the ∨ connective. Suppose the goal is ⊢ P[
Classical.em Q]. By the definition of the Or predicate, the new subgoals are

hQ : Q ⊢⊢⊢ P[Or.inl hQ : Q ∨ ¬ Q]

hnQ : ¬ Q ⊢⊢⊢ P[Or.inr hnQ : Q ∨ ¬ Q]

There is no need to modify P because Or.inl hQ and Or.inr hnQ have the same
type as Classical.em Q—namely, Q ∨ ¬ Q. In practice, the goal would usually not
contain Classical.em Q and be simply ⊢ P, and we would then have the subgoals

hQ : Q ⊢⊢⊢ P hnQ : ¬ Q ⊢⊢⊢ P

Again, this is the behavior we observed in Section 5.7.
In structured proofs, we can use match expressions (Section 5.4) to achieve the

same effect as cases. This works well for logical symbols. However, for predicates
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such as Even and Star, with arguments that evolve through the induction, we end
up with dependently typed pattern matching, which is subtle (Section 5.10). It is
generally easier to let cases figure out what the subgoals should look like than to
pattern-match. We will review an example of both styles below.

It can be useful to expand a hypothesis of the form Q (c . . .), where c is a
constructor or some other constant. We can state and prove an inversion rule to
support such eliminative reasoning. A typical inversion rule has the form

∀x1 . . . xn, Q (c x1 . . . xn)→ (∃. . ., · · · ∧ · · · ) ∨ · · · ∨ (∃. . ., · · · ∧ · · · )

It can be useful to combine introduction and elimination into a single theorem,
which can be used for rewriting both the hypotheses and the targets of goals. The
format is the same except for the connective↔ in the middle:

∀x1 . . . xn, Q (c x1 . . . xn)↔ (∃. . ., · · · ∧ · · · ) ∨ · · · ∨ (∃. . ., · · · ∧ · · · )

An inversion rule for Even is given below:

theorem Even_Iff (n : N) :
Even n ↔ n = 0 ∨ (∃m : N, n = m + 2 ∧ Even m) :=
by

apply Iff.intro
{ intro hn

cases hn with
| zero => simp
| add_two k hk =>

apply Or.inr
apply Exists.intro k
simp [hk] }

{ intro hor
cases hor with
| inl heq => simp [heq, Even.zero]
| inr hex =>

cases hex with
| intro k hand =>

cases hand with
| intro heq hk =>

simp [heq, Even.add_two _ hk] }

As usual, the tactical proof is not particularly readable, but we see that introduc-
tion rules and the eliminative cases tactic play a major role, for both the logical
symbols and the Even predicate. The simp tactic puts the final touches.

If you prefer structured proofs, here is a version of the proof with dependently
typed pattern matching on hn : Even n:

theorem Even_Iff_struct (n : N) :
Even n ↔ n = 0 ∨ (∃m : N, n = m + 2 ∧ Even m) :=
Iff.intro

(assume hn : Even n
match n, hn with
| _, Even.zero =>

show 0 = 0 ∨ _ from
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by simp
| _, Even.add_two k hk =>

show _ ∨ (∃m, k + 2 = m + 2 ∧ Even m) from
Or.inr (Exists.intro k (by simp [*])))

(assume hor : n = 0 ∨ (∃m, n = m + 2 ∧ Even m)
match hor with
| Or.inl heq =>

show Even n from
by simp [heq, Even.zero]

| Or.inr hex =>
match hex with
| Exists.intro m hand =>

match hand with
| And.intro heq hm =>

show Even n from
by simp [heq, Even.add_two _ hm])

6.6 Further Examples

Equipped with a better understanding of inductive predicates, we are now ready
to review four further applications in turn.

6.6.1 Sorted Lists

Our first example is a predicate that checks whether a list of natural numbers is
sorted in increasing order:

inductive Sorted : List N → Prop where
| nil : Sorted []
| single (x : N) : Sorted [x]
| two_or_more (x y : N) {zs : List N} (hle : x ≤ y)

(hsorted : Sorted (y :: zs)) :
Sorted (x :: y :: zs)

This definition captures the following mathematical intuition:

The set of sorted lists is defined as the smallest set closed under the
following rules:

(1) the list [] is sorted;
(2) given a number x, the list [x] is sorted;
(3) given two numbers x, y and a list zs, if x < y and y :: zs is sorted,

then x :: y :: zs is sorted.

It is always a good idea to test our definitions by trying it on small examples.
Is the list [3, 5] sorted? It would appear so:

theorem Sorted_3_5 :
Sorted [3, 5] :=
by
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apply Sorted.two_or_more
{ simp }
{ exact Sorted.single _ }

The example needs two of the introduction rules for sorted. This approach tends
to work well for expressions consisting only of closed terms. A more compact
proof follows, using proof terms:

theorem Sorted_3_5_raw :
Sorted [3, 5] :=
Sorted.two_or_more _ _ (by simp) (Sorted.single _)

The same idea can be used to prove that [7, 9, 9, 11] is sorted:

theorem sorted_7_9_9_11 :
Sorted [7, 9, 9, 11] :=
Sorted.two_or_more _ _ (by simp)

(Sorted.two_or_more _ _ (by simp)
(Sorted.two_or_more _ _ (by simp)

(Sorted.single _)))

Conversely, we can show that some lists are not sorted. For this, we need to
use elimination:

theorem Not_Sorted_17_13 :
¬ Sorted [17, 13] :=
by

intro h
cases h with
| two_or_more _ _ hlet hsorted => simp at hlet

From the hypothesis that the list [17, 13] is sorted, we extract the inequality 17
≤ 13. The cases tactic silently eliminates the nil and single cases, because they
cannot match a two-element list. Then we invoke simp to exploit the impossible
hypothesis 17 ≤ 13.

6.6.2 Palindromes

Palindromes are lists that read the same from left to right and from right to left.
For example, [a, b, b, a] and [a, h, a] are palindromes. The following inductive
predicate is True if and only if the list passed as argument is a palindrome:

inductive Palindrome {α : Type} : List α → Prop where
| nil : Palindrome []
| single (x : α) : Palindrome [x]
| sandwich (x : α) (xs : List α) (hxs : Palindrome xs) :

Palindrome ([x] ++ xs ++ [x])

The definition distinguishes three cases: (1) [] is a palindrome; (2) for any element
x, the singleton list [x] is a palindrome; (3) for any element x and any palindrome
[y1, . . ., yn], the list [x, y1, . . ., yn, x] is a palindrome.

Palindromes are another example where inductive predicates come into their
own. The following naive recursive definition cannot work because [x] ++ xs ++
[x] is not a constructor pattern, and the variable x is repeated:
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-- fails
def palindromeRec {α : Type} : List α → Bool

| [] => true
| [_] => true
| ([x] ++ xs ++ [x]) => palindromeRec xs
| _ => false

A correct recursive definition is possible but beyond the scope of this guide.
Naturally, the reverse of a palindrome is a palindrome. It is a good exercise:

theorem Palindrome_reverse {α : Type} (xs : List α)
(hxs : Palindrome xs) :

Palindrome (reverse xs) :=
by

induction hxs with
| nil => exact Palindrome.nil
| single x => exact Palindrome.single x
| sandwich x xs hxs ih =>

{ simp [reverse, reverse_append]
exact Palindrome.sandwich _ _ ih }

Informally:

The proof is by rule induction on the hypothesis hxs.
Case Palindrome.nil: We must show Palindrome (reverse []). This
follows from Palindrome.nil using reverse [] = [].
Case Palindrome.single x: We must show Palindrome (reverse [x]).
This follows from Palindrome.single using reverse [x] = [x].
Case Palindrome.sandwich x xs hxs: We must show Palindrome
(reverse ([x] ++ xs ++ [x])) under the hypothesis (hxs) Palindrome
xs. The induction hypothesis is Palindrome (reverse xs). By simplifi-
cation, it suffices to show Palindrome ([x] ++ reverse xs ++ [x]). By
Palindrome.sandwich, it suffices to show Palindrome (reverse xs),
which is exactly the induction hypothesis. ⊓⊔

6.6.3 Full Binary Trees

Our third example is based on the type of binary trees introduced in Section 5.8:

inductive BTree (α : Type) : Type where
| empty : BTree α

| node : α → BTree α → BTree α → BTree α

A binary tree is full if all its nodes have either zero or two children. This can
be encoded as an inductive predicate:

inductive IsFull {α : Type} : BTree α → Prop where
| empty : IsFull BTree.empty
| node (a : α) (l r : BTree α)

(hl : IsFull l) (hr : IsFull r)
(hiff : l = BTree.empty ↔ r = BTree.empty) :

IsFull (BTree.node a l r)
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The first case states that the empty tree is a full tree. The second case states that
a nonempty tree is a full tree if it has two child trees that are themselves full and
that are both empty or both nonempty. The two cases neatly follow the structure
of the inductive type, so it is natural to reuse the names empty and node.

The tree that consists of a node with empty trees as children is a full tree. Here
is a simple proof:

theorem IsFull_singleton {α : Type} (a : α) :
IsFull (BTree.node a BTree.empty BTree.empty) :=
by

apply IsFull.node
{ exact IsFull.empty }
{ exact IsFull.empty }
{ rfl }

A somewhat more interesting property of full trees is that fullness is preserved
by the mirror operation. Our first proof is by rule induction on ht : IsFull t:

theorem IsFull_mirror {α : Type} (t : BTree α)
(ht : IsFull t) :

IsFull (mirror t) :=
by

induction ht with
| empty => exact IsFull.empty
| node a l r hl hr hiff ih_l ih_r =>

{ rw [mirror]
apply IsFull.node
{ exact ih_r }
{ exact ih_l }
{ simp [mirror_Eq_empty_Iff, *] } }

Since IsFull’s definition follows BTree’s definition, it is also reasonable to per-
form structural induction on the tree t:

theorem IsFull_mirror_struct_induct {α : Type} (t : BTree α) :
IsFull t → IsFull (mirror t) :=
by

induction t with
| empty =>

{ intro ht
exact ht }

| node a l r ih_l ih_r =>
{ intro ht

cases ht with
| node _ _ _ hl hr hiff =>

{ rw [mirror]
apply IsFull.node
{ exact ih_r hr }
{ apply ih_l hl }
{ simp [mirror_Eq_empty_Iff, *] } } }

The key is the case distinction on the hypothesis ht : IsFull (BTree.node a l
r). The cases tactic notices that the IsFull.empty introduction rule cannot have



6.7. Induction Pitfalls 91

been used to derive ht, so it only produces one case, corresponding to IsFull.
node. As usual, the tactical proof will make more sense if you inspect it in Visual
Studio Code, moving the cursor around.

6.6.4 First-Order Terms

Our last example is based on an inductive type of first-order terms:
inductive Term (α β : Type) : Type where

| var : β → Term α β

| fn : α → List (Term α β) → Term α β

A first-order term is either a variable x or a function symbol f applied to a list
of arguments: f(t1, . . . , tn), where the mathematical variables t1, . . ., tn stand for
the arguments, which are themselves terms. Thus, sin(max(x, y)) is a first-order
term. The parameters α and β are the types of function symbols and variables,
respectively.

Not all terms are legal. For example, the term min(cos(a), cos(a, b)) is con-
sidered ill-formed, because the function cos is invoked with inconsistent number
of arguments (1 versus 2). Along with α and β, we also consider the arity, repre-
sented by a function arity : α→N indicating how many arguments each function
symbol takes. For example, a binary symbol has arity 2.

The WellFormed predicate then checks whether the given term only contains
function symbol applications with the specified number of arguments:

inductive WellFormed {α β : Type} (arity : α → N) :
Term α β → Prop where
| var (x : β) : WellFormed arity (Term.var x)
| fn (f : α) (ts : List (Term α β))

(hargs : ∀t ∈ ts, WellFormed arity t)
(hlen : length ts = arity f) :

WellFormed arity (Term.fn f ts)

The fn case checks that the arguments ts are recursively well formed and that
the length of ts equals the specified arity for the function symbol f in question.

Another interesting property of first-order terms is whether they contain vari-
ables. This can be checked easily using an inductive predicate:

inductive VariableFree {α β : Type} : Term α β → Prop where
| fn (f : α) (ts : List (Term α β))

(hargs : ∀t ∈ ts, VariableFree t) :
VariableFree (Term.fn f ts)

There is no introduction rule corresponding to Term.var because variables are
never variable-free.

6.7 Induction Pitfalls

Some care is needed when invoking induction on inductive predicates. The ar-
guments of inductive predicates often evolve through the induction. Such details
are often glossed over in informal proofs, but proof assistants require us to be
precise.

Recall the definition of even numbers:
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inductive Even : N → Prop where
| zero : Even 0
| add_two : ∀k : N, Even k → Even (k + 2)

If the goal has the form h : Even n ⊢ P n, applying induction on h will produce
the following subgoals:

⊢⊢⊢ P 0 k : N, hk : P k ⊢⊢⊢ P (k + 2)

This works as desired.
The problem is when Even’s argument is not a variable. Applying induction on

the hypothesis hev in the goal hev : Even (2 * n + 1) ⊢ False fails with an error:

index in target’s type is not a variable (consider using
the ‘cases‘ tactic instead)

To solve this issue, we need to replace 2 * n + 1 by a variable m and add an equa-
tion m = 2 * n + 1 as a hypothesis:

m : 2 * n + 1, hev : Even m ⊢⊢⊢ False

This goal is logically equivalent, but now induction produces two subgoals:

m n : N, hm : 0 = 2 * n + 1 ⊢⊢⊢ False

m : 2 * n + 1, ih : m = 2 * n + 1→ False, hm : m + 2 = 2 * n + 1 ⊢⊢⊢ False

Sadly, the second subgoal is not provable. The problem is that we want to instan-
tiate the n in the induction hypothesis ih with n - 1 but n is not instantiable.

The solution? We need to explicitly quantify over n to be able to instantiate
it in the induction hypothesis. This is done by specifying generalizing n after
induction n. Now we obtain the subgoals

m n : N, hm : 0 = 2 * n + 1 ⊢⊢⊢ False

m : 2 * n + 1, ih : ∀n, m = 2 * n + 1→ False, hm : m + 2 = 2 * n + 1 ⊢⊢⊢ False

Now the variable n in the conclusion is disconnected from the variable n in the
induction hypothesis, and we can instantiate the hypothesis’s n with the conclu-
sion’s n - 1.

Putting all of this together, we obtain

theorem Not_Even_two_mul_add_one (m n : N)
(hm : m = 2 * n + 1) :

¬ Even m :=
by

intro h
induction h generalizing n with
| zero => linarith
| add_two k hk ih =>

apply ih (n - 1)
cases n with
| zero => simp [Nat.ctor_eq_zero] at *
| succ n’ =>

simp [Nat.succ_eq_add_one] at *
linarith
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We use the theorem Nat.succ_eq_add_one to rewrite terms of the form Nat.succ
n to n + 1 and the linarith tactic to perform simple arithmetic reasoning. The
theorem is very useful when we face a mixture of Nat.succ and addition.

6.8 Summary of New Lean Constructs

Theorems

funext functional extensionality
propext propositional extensionality

Tactic

linarith invokes a procedure for linear arithmetic





Chapter 7

Effectful Programming

Pure functional programming can sometimes feel overly restrictive. Effectful func-
tional programming provides idioms that alleviate some of these restrictions, giv-
ing us the impression of programming with side effects, exceptions, nondetermin-
ism, and other effects.

The underlying abstraction is called monad. Monads generalize programs with
effects. They are popular in Haskell to write imperative programs. In Lean, they
are used to express imperative programs and to reason about them. They are even
useful for programming Lean itself, as we will see in Chapter 8.

These notes are inspired by Chapter 7 of Programming in Lean [2]. We also
refer to Chapter 14 of Real World Haskell [24] for a general introduction to effectful
functional programming.

7.1 Introductory Example

Consider the following programming task:

Implement a function sum257 ns that sums up the second, fifth, and
seventh items of a list ns of natural numbers. Use Option N for the
result so that you can return Option.none if the list has too few items.

A straightforward solution would be as follows:
def nth {α : Type} : List α → Nat → Option α

| [], _ => Option.none
| x :: _, 0 => Option.some x
| _ :: xs, n + 1 => nth xs n

def sum257 (ns : List N) : Option N :=
match nth ns 1 with
| Option.none => Option.none
| Option.some n2 =>

match nth ns 4 with
| Option.none => Option.none
| Option.some n5 =>

match nth ns 6 with
| Option.none => Option.none
| Option.some n7 => Option.some (n2 + n5 + n7)

95
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(Confusingly, nth counts elements from 0.) The code is quite inelegant, because of
all the pattern matching on Option. Although the programming task is contrived,
we can all recall writing code with nested error handling and ever increasing in-
dentation levels.

We can do better, by concentrating all the ugliness in one function:

def connect {α : Type} {β : Type} :
Option α → (α → Option β) → Option β

| Option.none, _ => Option.none
| Option.some a, f => f a

The connect function works on an Option. If the value is Option.none, we leave
it as is. This corresponds to an error condition, and errors are “sticky.” Otherwise,
the value is of the form Option.some a, and we apply the operation f on a—or
bind f’s argument to a. We can now use connect to program our sum function:

def sum257Connect (ns : List N) : Option N :=
connect (nth ns 1)

(fun n2 7→ connect (nth ns 4)
(fun n5 7→ connect (nth ns 6)

(fun n7 7→ Option.some (n2 + n5 + n7))))

Intuitively, the program performs the following steps:
1. Extract the second item from the list using nth. If there is no such item, nth

returns Option.none; simply return this value. Otherwise, bind n2 to this
item and continue with the next step.

2. Perform the same for the fifth and seventh item, mutatis mutandis.
3. Return the sum of n2, n5, and n7 in an Option.some wrapper.

Mathematically, our new function sum257Connect is equal to the original function
sum257.

Instead of defining connect ourselves, we could have used Lean’s predefined
general bind operation. It takes the same arguments in the same order. Here is
the new code:

def sum257Bind (ns : List N) : Option N :=
bind (nth ns 1)

(fun n2 7→ bind (nth ns 4)
(fun n5 7→ bind (nth ns 6)

(fun n7 7→ pure (n2 + n5 + n7))))

We also use the predefined pure function instead of Option.some to convert a
pure α value to an Option α.

One of the advantages of using the predefined bind is that it provides syntactic
sugar, in the form of the >>= operator:

def sum257Op (ns : List N) : Option N :=
nth ns 1 >>=

fun n2 7→ nth ns 4 >>=
fun n5 7→ nth ns 6 >>=

fun n7 7→ pure (n2 + n5 + n7)

The syntax oa >>= f expands to bind oa f, where oa is of type Option α.
The next-to-last version of the sum program uses heavier syntactic sugar:



7.2. Two Operations and Three Laws 97

def sum257Dos (ns : List N) : Option N :=
do

let n2 ← nth ns 1
do

let n5 ← nth ns 4
do

let n7 ← nth ns 6
pure (n2 + n5 + n7)

The do notation provides a convenient syntax for effectful programs. The program
do let a← oa . . . is equivalent to oa >>= (fun a 7→ . . .). If we are not interested
in the result of oa’s computation, we can omit the let a← binding and write do
oa . . ., which expands to oa >>= (fun _ 7→ . . .).

The do notation conveniently allows multiple let bindings in a single block.
This brings us to the final version of the program:

def sum257Do (ns : List N) : Option N :=
do

let n2 ← nth ns 1
let n5 ← nth ns 4
let n7 ← nth ns 6
pure (n2 + n5 + n7)

Each line with an arrow← attempts to read a value. In case of failure, the entire
program evaluates to Option.none.

The above function can be read as an imperative program where each of the
nth calls can throw an exception. But even though the notation has an imperative
flavor, the function is a pure functional program.

7.2 Two Operations and Three Laws

The Option type constructor is an example of a monad, called the option monad.
In general, a monad is a unary type constructor m : Type→ Type that depends on
some type parameter α equipped with two distinguished operations:

pure {α : Type} : α→ m α

bind {α β : Type} : m α→ (α→ m β)→ m β

As usual, curly braces denote implicit arguments. For options, the pure operation
is simply Option.some, whereas bind amounts to our connect.

Recall that a value of type m α is an effectful program. The pure operation
embeds a pure, effectless program of type α in m α. The bind operation composes
two effectful programs, of types m α and m β. The first program’s output, of type α,
is passed to the second program. The second program’s output is also the output
of the composite program.

We can think of a monad as a box containing some data. The box captures
some special effect (e.g., exceptions, a mutable state). The pure operation puts
data into the box, whereas bind allows us to access the data in the box and modify
it—possibly even changing its type, since the result has type m β, not m α. There
is, however, no general way to extract the data from the box—i.e., to obtain an α

from an m α. There might not be any α value in it, or there might be several.
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To summarize, pure a is a box containing the value a, with no effects, whereas
bind ma f (also written ma >>= f or do a← ma, f a) executes ma, then executes f
with the unboxed result a of ma. It is convenient to use names such as ma or mb for
boxed values of type m α or m β, and a or b for data of type α or β.

Monads are an abstract concept with many applications. The option type is
only one instance among many. The following table gives an overview of some
monad instances and their effects.

Type Effect

id no effects
Option simple exceptions
fun α 7→ σ→ α × σ threading through a state of type σ

Set nondeterministic computations returning α values
fun α 7→ t→ α reading elements of type t (e.g., a configuration)
fun α 7→ N × α adjoining running time (e.g., to model time complexity)
fun α 7→ String × α adjoining text output (e.g., for logging)
IO interaction with the operating system
TacticM interaction with the proof assistant

All of the above are unary type constructors m : Type→ Type. Some effects
can be combined (e.g., fun α 7→ Option (t→ α)). Some effects are not executable
(e.g., Set); they are nonetheless useful for modeling programs abstractly. Specific
type constructors m may provide further operators beyond pure and bind. For
example, they may provide a way to extract the boxed value.

Monads have several benefits. They provide the highly readable do notation.
They support generic operations, such as List.mmap {α β : Type} : (α→ m β)→
List α→ m (List β), that work uniformly for all monads m. To quote Program-
ming in Lean [2]:

The power of the abstraction is not only that it provides general func-
tions and notation that can be used in all these various instantiations,
but also that it provides a helpful way of thinking about what they all
have in common.

Besides being a useful computer science concept, monads provide a nice example
of axiomatic reasoning.

The bind and pure operations are normally required to obey three laws. The
bind operation combines two programs. If either of these is a pure program, we
can inline it and eliminate the bind. This gives us the first two laws:

do
let a’← pure a = f a
f a’

and
do
let a← ma = ma
pure a

The third law is an associativity rule for bind. It allows us to flatten a nested
computation:
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do
let b← do
do = let a← ma
let a← ma let b← f a
f a g b

g b

Earlier we compared a monad to a box. It may help to think of the box more
concretely as a Swiss bank account, with α := money. The first law means that if
you put some money in the account, you can take it out. The second law means
that nobody will notice if you take out some money and put it back afterwards.
The third law means that performing two bank operations together followed by a
third one is the same as performing the first one alone followed by the other two.
Given the Swiss banks’ reputation for secrecy, all three laws seem plausible.

7.3 A Type Class

Monads are a mathematical structure, so we use a type class to specify them in
Lean. Recall that a type class is a structure type that is parameterized, typically by
a type, but here by a type constructor m : Type→ Type. Whenever we use a field
from the type class on a concrete m, the type class inference mechanism retrieves
the relevant structure value—the type class instance.

A possible Lean definition of monads, together with the three laws, follows:

class LawfulMonad (m : Type → Type)
extends Pure m, Bind m where
pure_bind {α β : Type} (a : α) (f : α → m β) :

(pure a >>= f) = f a
bind_pure {α : Type} (ma : m α) :

(ma >>= pure) = ma
bind_assoc {α β γ : Type} (f : α → m β) (g : β → m γ)

(ma : m α) :
((ma >>= f) >>= g) = (ma >>= (fun a 7→ f a >>= g))

Let us study this definition step by step:

We are creating a structure parameterized by a unary type constructor m—i.e.,
a value of type Type→ Type.
The structure inherits the fields, and any syntactic sugar, from structures
called Pure and Bind. These provide the pure and bind operations on m,
with the expected types and the syntactic sugar.
Finally, three fields (pure_bind, bind_pure, and bind_assoc) are added to
those already provided by Pure and Bind. Each field is a proof of one of the
three laws.

We call our type class LawfulMonad because the three laws are required to hold.
To instantiate this definition, we must supply the type constructor m, suitable bind
and pure operators, and proofs of the laws.

Lean includes its own concept of monads, also called LawfulMonad. It is roughly
equivalent to our definition but is distributed over multiple type classes.
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7.4 No Effects

Lean’s constant id {α : Type} : α→ α is defined as the identity function fun x 7→
x. The identity type constructor is obtained by taking α := Type. We can register
it as a monad:

def id.pure {α : Type} : α → id α

| a => a

def id.bind {α β : Type} : id α → (α → id β) → id β

| a, f => f a

instance id.LawfulMonad : LawfulMonad id :=
{ pure := id.pure

bind := id.bind
pure_bind :=

by
intro α β a f
rfl

bind_pure :=
by

intro α ma
rfl

bind_assoc :=
by

intro α β γ f g ma
rfl }

The registration process requires us to provide five components: the pure and
bind operations and the proofs of the three laws.

The identity monad is the simplest monad possible. It provides a simple box,
with a single value in it, without any effect. It plays a similar role as 0 in additive
arithmetic. We can think of the other monads as variations of it; for example, the
option monad is an identity monad enriched with a special Option.none value
representing an error state.

7.5 Basic Exceptions

As we saw above, the option type provides a basic exception mechanism. The
following code shows how to register Option : Type→ Type as a lawful monad:

def Option.pure {α : Type} : α → Option α :=
Option.some

def Option.bind {α β : Type} :
Option α → (α → Option β) → Option β

| Option.none, _ => Option.none
| Option.some a, f => f a

instance Option.LawfulMonad : LawfulMonad Option :=
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{ pure := Option.pure
bind := Option.bind
pure_bind :=

by
intro α β a f
rfl

bind_pure :=
by

intro α ma
cases ma with
| none => rfl
| some _ => rfl

bind_assoc :=
by

intro α β γ f g ma
cases ma with
| none => rfl
| some _ => rfl }

The three proofs are straightforward.
Beyond the standard operations, it can be useful to throw and catch excep-

tions. This can be implemented as follows:

def Option.throw {α : Type} : Option α :=
Option.none

def Option.catch {α : Type} : Option α → Option α → Option α

| Option.none, ma’ => ma’
| Option.some a, _ => Option.some a

The Option.throw operation raises an exception, leaving the program in an error
state (Option.none). The Option.catch operation can be used to recover from
an earlier exception. If the program is currently in an error state, Option.catch
invokes some exception-handling code (its second argument). This code might in
turn raise a new exception. If Option.catch is applied to a normal state (of the
form Option.some a), nothing happens.

As a convenient alternative to Option.catch ma ma’, Lean supports the syn-
tax ma.catch ma’. Here is a schematic example that demonstrates throwing and
catching with this syntax:

do
. . .
if . . . then

Option.throw
else

. . .
.catch do

. . .

The corresponding Java code would look as follows:

try {
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. . .
if (. . .) {

throw new UnknownException();
} else {

. . .
}

} catch (UnknownException e) {
. . .

}

Options cater for only one kind of error state. A more general abstraction,
called error monad, supports different errors, as with the exceptions of Java and
other programming languages.

7.6 Mutable State

The state monad provides an abstraction corresponding to a mutable state. For
some programming languages, the compiler can detect the use of the state monad
and translate programs using them to more efficient imperative programs.

Admittedly, “abstraction corresponding to a mutable state” may sound some-
what abstract, so let us consider a semiconcrete example. If you have some ex-
perience with functional programming, you probably at some point or other have
written code that looks very much like this fragment:

def welcomeNewUser (userName : String) (ctxt : Context) :
(N × String) × Context :=
let

(user, ctxt’) := createUser userName ctxt
(password, ctxt’’) := generateTemporaryPassword user ctxt’
(ok, ctxt’’’) := sendUnencryptedEmail user password ctxt’’

in
((user, password), ctxt’’’)

(It is very important to send the password in an unencrypted email, and to ignore
the ok status of the function.) The function takes some global state or context
as input and invokes three functions in turn, each of which takes a context value
and returns both some data and a new context. The context is effectively threaded
through the program. This allows us to have a mutable state in a programming
language without side effects.

The above approach is error-prone—it is all too easy to forget one prime (’)
and pass the wrong context to a function. The code is also cluttered by all the
context variables. What if we could simply write the following instead?

def welcomeNewUser_do (userName : String) :
Context → (N × String) × Context :=
do

let user ← createUser userName
let password ← generateTemporaryPassword user
let ok ← sendUnencryptedEmail user password
pure (user, password)
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This is exactly what the state monad provides.
The state monad builds on top of a binary type constructor Action, which

captures the concept of computations or actions over states of type σ with return
values of type α. In Lean, Action σ α is defined as equal to σ→ α × σ:1

def Action (σ α : Type) : Type :=
σ → α × σ

(Since types are terms, we can use def also to define type abbreviations.) For
a given type σ, we have that Action σ : Type → Type is a monad. The type σ

abstracts over the exact memory layout. We could use tuples or lists to represent
memory, for example, and instantiate the abstract state σ accordingly.

A stateful action is a function that takes some state and returns both a value
and some new state. The σ→ part of Action’s definition gives the old state; the
left component of the cartesian product, α, gives the result of the computation;
and the right component of the product, σ, gives the new state. Thus, the state is
implicitly threaded through the program. As with other effectful programs, the do
notation only exposes the data—the value of type α—and conceals the effect—the
old and new σ states.

The case where σ := Unit, a type of cardinality one (similar to void in C or Java)
whose unique value is written (), corresponds to the identity monad: The type
Unit→ α × Unit is isomorphic to α. This intuition can guide us when defining
pure and bind.

We start by defining basic operations: two operations, read and write, to ac-
cess the memory, and the standard operations bind and pure:

def Action.read {σ : Type} : Action σ σ

| s => (s, s)

def Action.write {σ : Type} (s : σ) : Action σ Unit
| _ => ((), s)

def Action.pure {σ α : Type} (a : α) : Action σ α

| s => (a, s)

def Action.bind {σ : Type} {α β : Type} (ma : Action σ α)
(f : α → Action σ β) :

Action σ β

| s =>
match ma s with
| (a, s’) => f a s’

The read operation simply returns the current state s (in the first pair component)
and leaves the state unchanged (in the second pair component). The write oper-
ation replaces the current state with s and returns (). The pure operation returns
the current state s unchanged tupled together with the given value a. The bind
operation passes the initial state to the ma argument, yielding a result a and a new
state s’. These are passed to f, which returns a new result and a new state.

To register the Action type constructor as a lawful monad, we need as before
to prove the three laws:

1This type constructor is traditionally called State, but this name is very confusing.
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instance Action.LawfulMonad {σ : Type} :
LawfulMonad (Action σ) :=
{ pure := Action.pure

bind := Action.bind
pure_bind :=

by
intro α β a f
simp [Pure.pure, Bind.bind, Action.pure, Action.bind]

bind_pure :=
by

intro α ma
simp [Pure.pure, Bind.bind, Action.pure, Action.bind]

bind_assoc :=
by

intro α β γ f g ma
simp [Pure.pure, Bind.bind, Action.pure, Action.bind] }

Notice that, in all three proofs, we unfold the definitions of the generic pure and
bind constants to expand them to Action.pure and Action.bind, whose defini-
tions we also expand.

As a concrete example, the following program removes all elements that are
smaller than a previous element in the list, leaving us with a list of increasing
elements. The maximal element is stored as the state σ. Notice how the state is
accessed by read and write.

def increasingly : List N → Action N (List N)
| [] => pure []
| (n :: ns) =>

do
let prev ← Action.read
if n < prev then

increasingly ns
else

do
Action.write n
let ns’ ← increasingly ns
pure (n :: ns’)

To execute the program, we must supply an initial state. The last state is re-
turned along with the resulting list. It corresponds to the largest element encoun-
tered in the list or the start state. Thus, the commands

#eval increasingly [1, 2, 3, 2] 0
#eval increasingly [1, 2, 3, 2, 4, 5, 2] 0

produce the output

([1, 2, 3], 3)
([1, 2, 3, 4, 5], 5)
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7.7 Nondeterminism

Whereas the option monad stores zero or one α values and the identity and state
monads store exactly one value, the set monad stores a possibly infinite number
of values. This is useful to model nondeterminism, as a set of possible behaviors.

Lean’s type Set α is defined as α→ Prop. In other words, a set is identified
with its characteristic predicate. Familiar operators such as the empty set (∅), the
universal set (Set.univ), union (∪), intersection (∩), and membership (∈) are sup-
ported, as well as traditional curly brace notations such as {a}, {a, b}, and {x |
P x}. Many set constructs can be simplified by simp.

The Set type constructor can be registered as a lawful monad as follows:

def Set.pure {α : Type} : α → Set α

| a => {a}

def Set.bind {α β : Type} : Set α → (α → Set β) → Set β

| A, f => {b | ∃a, a ∈ A ∧ b ∈ f a}

/- ’Set.bind ’is like a ’map ’function over sets in which each
element of the

source set maps to a set of elements (all of which are combined)
. -/

instance Set.LawfulMonad : LawfulMonad Set :=
{ pure := Set.pure

bind := Set.bind
pure_bind :=

by
intro α β a f
simp [Pure.pure, Bind.bind, Set.pure, Set.bind]

bind_pure :=
by

intro α ma
simp [Pure.pure, Bind.bind, Set.pure, Set.bind]

bind_assoc :=
by

intro α β γ f g ma
simp [Pure.pure, Bind.bind, Set.pure, Set.bind]
apply Set.ext
aesop }

The pure operation simply puts the given value a in a singleton set {a}. The bind
operation calls f on all values in the set A and returns the union of all the re-
sults. For example, if A := {3, 8} and f := (fun a 7→ {a, a + 1}), then set.bind A
f equals{3, 4, 8, 9} .

The last proof relies on set extensionality, which states that two sets that con-
tain the same elements must be equal:

Set.ext {α : Type} {A B : set α} : (∀x, x ∈ A↔ x ∈ B)→ A = B
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Another noteworthy point is the use of the aesop tactic. The goal’s target is

∀x, x ∈ b | ∃ a, (∃ a_1, a_1 ∈ ma ∧ a ∈ f a_1) ∧ b ∈ g a
↔ x ∈ b | ∃ a, a ∈ ma ∧ ∃ a_1, a_1 ∈ f a ∧ b ∈ g a_1

where the two sides of↔ are the same except for the placement of the existential
quantifiers (and, confusingly, the names of the bound variables). This ugly propo-
sition could be proved by a tedious sequence of introduction and elimination, but
we deserve more automation.

7.8 Aesop Tactic

aesop

The aesop tactic [19], whose name stands for Automated Extensible Search for Ob-
vious Proofs, is a general-purpose proof search tactic. Among others, it performs
elimination of the logical symbols ∧, ∨,↔, and ∃ in hypotheses and introduction
of ∧,↔, and ∃ in the target, and it regularly invokes the simplifier. It can succeed
at proving a goal, fail, or succeed partially, leaving some unfinished subgoals to
the user.

7.9 A Generic Algorithm: Iteration over a List

Suppose we apply an effectful function f on all elements of a list using map. We
then obtain a regular list of effectful values. For example:

def nthsFine {α : Type} (xss : List (List α)) (n : N) :
List (Option α) :=
List.map (fun xs 7→ nth xs n) xss

The function nthsFine xss n tries to extract the (n + 1)st element of each list in
xss. Running

#eval nthsFine [[11, 12, 13, 14], [21, 22, 23]] 2

returns [Option.some 13, Option.some 23].
These Option.some constructors can be inconvenient. Often, we only care

about whether any error arose. This leads us to our final example: a generic ef-
fectful program mmap that iterates over a list and applies an effectful function f to
each element. The definition is recursive:

def mmap {m : Type → Type} [LawfulMonad m] {α β : Type}
(f : α → m β) :

List α → m (List β)
| [] => pure []
| a :: as =>

do
let b ← f a
let bs ← mmap f as
pure (b :: bs)
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Notice that the function returns a single m value containing a list and not a list of
m values. Try to work out why it is well typed and has the desired behavior.

We can now trying using mmap instead of map:

def nthsCoarse {α : Type} (xss : List (List α)) (n : N) :
Option (List α) :=
mmap (fun xs 7→ nth xs n) xss

Running

#eval nthsCoarse [[11, 12, 13, 14], [21, 22, 23]] 2

returns Option.some [13, 23], with a single Option.some around a pure list.
The mmap function distributes over the append operator ++. The do notation is

useful not only for defining functions but also for stating their properties:

theorem mmap_append {m : Type → Type} [LawfulMonad m]
{α β : Type} (f : α → m β) :

∀as as’ : List α, mmap f (as ++ as’) =
do

let bs ← mmap f as
let bs’ ← mmap f as’
pure (bs ++ bs’)

| [], _ =>
by simp [mmap, LawfulMonad.bind_pure, LawfulMonad.pure_bind]

| a :: as, as’ =>
by simp [mmap, mmap_append _ as as’, LawfulMonad.pure_bind,

LawfulMonad.bind_assoc]

7.10 Summary of New Lean Constructs

Notations

do indicates the start of an effectful program
let . . .← . . . assigns a variable in an effectful program
>>= composes effectful computations

Theorem

Set.ext set extensionality

Tactic

aesop proves propositions using a generic search procedure
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Metaprogramming

Like most proof assistants, Lean can be extended with custom tactics and other
functionality. Programming Lean itself, as opposed to merely using it, is called
metaprogramming. Lean’s metaprogramming framework uses mostly the same
notions and syntax as Lean’s input language, so that we do not need to learn a
different language to program Lean. Monads are used to access Lean’s state.

Abstract syntax trees, presented as inductive types, reflect internal data struc-
tures. The proof assistant’s internals are exposed through Lean functions, which
we can use to access the current goal, unify terms, query and modify the global
context, and set attributes (e.g., @[simp]).

Here are some example applications of metaprogramming:

goal transformations (e.g., applying safe introduction rules, putting the goal
in negation normal form);
heuristic proof search (e.g., applying unsafe introduction rules with back-
tracking);
decision procedures (e.g., for linear arithmetic, propositional logic);
definition generators (e.g., Haskell-style deriving for inductive types);
advisor tools (e.g., theorem finders, counterexample generators);
exporters (e.g., documentation generators);
ad hoc proof automation (to avoid boilerplate or duplication).

As mathematician and Lean user Kevin Buzzard wrote:1

If you find yourself “grinding” (to use a computer game phrase), doing
the same sort of stuff over and over again because you need to do it
to make progress, then you can try to persuade a computer scientist
to write a tactic to do it for you (or even write your own tactic if you’re
brave enough to write meta Lean code).

8.1 Tactic Combinators

First, some terminology: A tactic fails if applying it produces an error; otherwise,
it succeeds. One way for a tactic to succeed is to fully prove the goal. Another is

1https://xenaproject.wordpress.com/2020/02/09/lean-is-better-for-proper-maths-
than-all-the-other-theorem-provers/
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to produce new subgoals that replace the current goal. Some tactics succeed by
doing nothing.

When programming our own tactics, we often need to repeat some actions on
several goals, or to recover if a tactic fails. Tactic combinators help in such cases.
One of the most useful tactic combinators is repeat’ tactic. It invokes tactic
repeatedly on all goals, then on the emerging subgoals, then on the emerging
subsubgoals, and so on until tactic fails on all the available goals. Here is an
example of repeat’ involving the Even predicate presented in Chapter 6:

theorem repeat’_example :
Even 4 ∧ Even 7 ∧ Even 3 ∧ Even 0 :=
by

repeat’ apply And.intro
repeat’ apply Even.add_two

After the first repeat’ line, the proof state consists of four goals:

⊢⊢⊢ Even 4 ⊢⊢⊢ Even 7 ⊢⊢⊢ Even 3 ⊢⊢⊢ Even 0

Notice that all conjunctions are gone. The second repeat’, which applies the
theorem Even.add_two : ∀k, Even k→ Even (k + 2) over and over, leaves us with
these goals:

⊢⊢⊢ Even 0 ⊢⊢⊢ Even 1 ⊢⊢⊢ Even 1 ⊢⊢⊢ Even 0

The first and last goals are annoying because they correspond to the theorem
Even.zero. We can prove them by trying to apply Even.zero whenever applying
Even.add_two fails. This is achieved as follows:

theorem repeat’_first_example :
Even 4 ∧ Even 7 ∧ Even 3 ∧ Even 0 :=
by

repeat’ apply And.intro
repeat’

first
| apply Even.add_two
| apply Even.zero

The tactic combinator first | tactic1 | · · · | tacticn first tries to execute its
first argument, tactic1. If this fails, tactic2 is tried, and so on. If all the speci-
fied tactics fail, the entire combinator fails. In the example above, we have two
unprovable goals left:

⊢⊢⊢ Even 1 ⊢⊢⊢ Even 1

The next combinator, all_goals tactic, invokes a tactic exactly once on each
goal. The combinator succeeds only if tactic succeeds on all goals. It fails in the
example below, because Even.add_two cannot be applied to the goal ⊢ Even 0:

theorem all_goals_example :
Even 4 ∧ Even 7 ∧ Even 3 ∧ Even 0 :=
by

repeat’ apply And.intro
all_goals apply Even.add_two -- fails
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To ignore failures of tactic, we can wrap it in the try combinator:
theorem all_goals_try_example :

Even 4 ∧ Even 7 ∧ Even 3 ∧ Even 0 :=
by

repeat’ apply And.intro
all_goals try apply Even.add_two

The resulting state is

⊢⊢⊢ Even 2 ⊢⊢⊢ Even 5 ⊢⊢⊢ Even 1 ⊢⊢⊢ Even 0

The construct try tactic is equivalent to first | tactic | skip, where skip is a
tactic that succeeds without doing anything. Hence try tactic always succeeds.
A related tactic is done: It succeeds if there are no goals left and fails otherwise.

Another variant is the any_goals tactic combinator. It tries to invoke tactic
once on each goal, but unlike all_goals, it succeeds if tactic succeeds on any
goal. The example

theorem any_goals_example :
Even 4 ∧ Even 7 ∧ Even 3 ∧ Even 0 :=
by

repeat’ apply And.intro
any_goals apply Even.add_two

results in the state

⊢⊢⊢ Even 2 ⊢⊢⊢ Even 5 ⊢⊢⊢ Even 1 ⊢⊢⊢ Even 0

This is the same state as in the previous example. In general, the difference is that
any_goals tactic can fail whereas all_goals try tactic always succeeds.

Sometimes we want to leave a goal alone unless we can fully prove it. The
combinator solve | tactic1 | · · · | tacticn first tries to execute its first argument,
tactic1. If this fails to prove the goal, tactic2 is tried, and so on. If all the
specified tactics fail to prove the goal, the entire combinator fails. (Compare this
behavior with that of first | tactic1 | · · · | tacticn, which only requires one of
the specified tactics to succeed, not to prove the goal.) Consider this example:

theorem any_goals_solve_repeat_first_example :
Even 4 ∧ Even 7 ∧ Even 3 ∧ Even 0 :=
by

repeat’ apply And.intro
any_goals

solve
| repeat’

first
| apply Even.add_two
| apply Even.zero

The first and fourth goals are proved, and we are left with the two unprovable
goals exactly as they stand in the theorem statement:

⊢⊢⊢ Even 7 ⊢⊢⊢ Even 3

Note that the repeat’ combinator can lead to infinite looping. Consider this
example:
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theorem repeat’_Not_example :
¬ Even 1 :=
by repeat’ apply Not.intro

The Not.intro rule is (?a→ False)→ ¬ ?a, so it applies once to transform the
goal into ⊢ Even 1→ False. Because ¬ ?a is defined as ?a→ False, the rule ap-
plies again, yielding the same goal again. The tactic loops.

Finally, the “and then” operator <;> can be used to join two tactics. The left-
hand side is executed on the first goal. The right-hand side is executed on every
emerging subgoal (but not on the original second goal, third goal, etc.). Thus, we
can write

by
induction n <;>

aesop

instead of the more verbose

by
induction n with
| zero => aesop
| succ n’ ih => aesop

8.2 Macros

It is time to start with the actual metaprogramming, by coding a custom tactic as
a macro. The tactic embodies the behavior we hardcoded in the solve example
above:

macro "intro_and_even" : tactic =>
’(tactic|

(repeat’ apply And.intro
any_goals

solve
| repeat’

first
| apply Even.add_two
| apply Even.zero))

The first line declares intro_and_even as a macro belonging to the tactic
syntactic category. On the remaining lines, the ’(tactic| tactic) construct em-
beds the specified tactic, tactic, in a macro. The tactic itself is specified using
standard syntax.

Once we have defined a custom tactic, we can invoke it in a proof:

theorem intro_and_even_example :
Even 4 ∧ Even 7 ∧ Even 3 ∧ Even 0 :=
by

intro_and_even

This yields the subgoals

⊢⊢⊢ Even 7 ⊢⊢⊢ Even 3
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8.3 The Metaprogramming Monads

Macros are a simple mechanism that can be used to program simple proof au-
tomation. For most metaprogramming tasks, however, we need to use the meta-
programming monads, MetaM and TacticM.

MetaM combines the attributes of several kinds of monads:
It is a state monad providing access to the global context (including all defini-
tions and inductive types), notations, and attributes (e.g., the list of @[simp]
theorems), among others.
It behaves like an option monad. The metaprogram failure signals that a
tactic has failed.
It supports tracing, so we can use the program logInfo to display messages.
Like other monads, it supports imperative constructs such as for–in loops,
continue statements, and return statements.

TacticM extends MetaM with goal management: It provides access to the list
of goals. It also allows us to run the elaborator to fill in the implicit { } and type
class [ ] arguments in expressions, to expand macros, and more.

Inside Lean, each goal is represented as a metavariable ?m standing for a miss-
ing term (typically, a proof term). Each metavariable has a type (typically, a propo-
sition) and a local context specifying the variables and hypotheses that can be
used to prove the goal associated with the metavariable.

Let us put the metaprogramming monad to some use by defining a tactic that
uses TacticM’s tracing facilities to display the Lean version number, the list of
goals, and the target of the first goal (which Lean calls the main goal):

def traceGoals : TacticM Unit :=
do

logInfo m!"Lean version {Lean.versionString}"
logInfo "All goals:"
let goals ← getUnsolvedGoals
logInfo m!"{goals}"
match goals with
| [] => return
| _ :: _ =>

logInfo "First goal’s target:"
let target ← getMainTarget
logInfo m!"{target}"

elab "trace_goals" : tactic =>
traceGoals

The code has many interesting features:
The first line declares a function traceGoals of type TacticM Unit—the type
of tactics that return Unit (a trivial type of cardinality one). Notice that a
metaprogramming function is defined using the same syntax as any Lean
function.
The second line enters the monad. The remaining lines are effectful opera-
tions that access Lean’s internals.
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The m!". . ." syntax specifies a string in which every occurrence of {term}
, where term is a Lean term, are evaluated and serialized into a string. For
example, if Lean.versionString is “4.0.0-nightly-2023-08-19”, then m!"Lean
version {Lean.versionString}" evaluates to the string “Lean version 4.0.0-
nightly-2023-08-19”.
The last two lines register a new tactic called trace_goal that simply calls
the traceGoals function.

Here is an example of how we can use the new tactic:

theorem Even_18_and_Even_20 (α : Type) (a : α) :
Even 18 ∧ Even 20 :=
by

apply And.intro
trace_goals
intro_and_even

The output, which is made visible by hovering over trace_goals, is as follows:

Lean version 4.0.0-nightly-2023-08-19
All goals:
[case left
α : Type
a : α

⊢ Even 18,
case right

α : Type
a : α

⊢ Even 20]
First goal’s target:
Even 18

Although Lean displays goals using the familiar goal syntax C ⊢ P, they are actu-
ally metavariables.

The constants used in the above program have the following types:

logInfo : MessageData→ TacticM Unit
getUnsolvedGoals : TacticM (List MVarId)

getMainTarget : TacticM Expr

where MessageData represents a message, MVarId represents a metavariable iden-
tifier, and Expr represents a term.

8.4 First Example: An Assumption Tactic

Our first larger example implements a hypothesis tactic that, like the predefined
assumption tactic, looks for a hypothesis of the right type (i.e., the right proposi-
tion) and applies it to prove the goal:

def hypothesis : TacticM Unit :=
withMainContext

(do
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let target ← getMainTarget
let lctx ← getLCtx
for ldecl in lctx do

if ! LocalDecl.isImplementationDetail ldecl then
let eq ← isDefEq (LocalDecl.type ldecl) target
if eq then

let goal ← getMainGoal
MVarId.assign goal (LocalDecl.toExpr ldecl)
return

failure)

elab "hypothesis" : tactic =>
hypothesis

In the hypothesis function, we first extract the first goal’s target and the local
context. To make sure that getLCtx gives us the local context of the current first
goal, we pass the entire do block to the withMainContext function. In general,
any TacticM computation is performed within an ambient local context that gives
meaning to the free variables occurring in expressions. The withMainContext
function sets this local context to the local context of the current first goal.

Inside the do block, we iterate over all declarations in the local context, using
the convenient monadic construct for–in. For each local variable or hypothesis
h that is not a so-called implementation detail (i.e., a hypothesis inserted by Lean
that is invisible to users), we check if its type (typically, its proposition) is equal
to the target up to computation and instantiation of metavariables, and if so, we
get the metavariable ?m associated with the first goal and assign ?m := h, thereby
proving the goal. Finally, we return.

Since goals are representing by metavariables, assigning a term to a meta-
variable ?m is Lean’s low-level way of proving a goal. New metavariables occurring
in that term correspond to new subgoals that must be proved.

A simple invocation of hypothesis follows:

theorem hypothesis_example {α : Type} {p : α → Prop} {a : α}
(hpa : p a) :

p a :=
by hypothesis

If we add tracing, we can see that α, p, a, and hpa are tried in turn before the
matching hypothesis hpa is found and successfully applied.

The example used the following new constants:

getLCtx : TacticM LocalContext
LocalDecl.isImplementationDetail : LocalDecl→ Bool

isDefEq : Expr→ Expr→ TacticM Bool
LocalDecl.type : LocalDecl→ Expr

getMainGoal : TacticM MVarId
MVarId.assign : MVarId→ Expr→ TacticM Unit

LocalDecl.toExpr : LocalDecl→ Expr
failure {α : Type} : TacticM α
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8.5 Expressions

The metaprogramming framework revolves around the type Expr of expressions
or terms. An important component of expressions are names, of type Name. We
start with names.

Names can be specified using a single backtick. For example, ’x represents the
name x, which can be given to a variable or constant. When referring to constants,
we must specify the full name, including namespaces; thus, to refer to the Even
predicate of Chapter 6, we must write ’LoVe.Even and not ’Even.

If we want to refer to an existing constant, Lean offers the double-backtick
syntax, which looks up the name using Lean’s usual name elaboration rules and
expands it to its full name. Thus, both ’’Even and ’’LoVe.Even refer to the name
LoVe.Even, and if we write some name that is not declared, such as ’’EvenThough,
Lean gives an error.

The type Expr is defined as follows:

inductive Expr : Type where
| const : Name → List Level → Expr
| sort : Level → Expr
| fvar : FVarId → Expr
| mvar : MVarId → Expr
| app : Expr → Expr → Expr
| lam : Name → Expr → Expr → BinderInfo → Expr
| bvar : Nat → Expr
| forallE : Name → Expr → Expr → BinderInfo → Expr
| letE : Name → Expr → Expr → Expr → Bool → Expr
| lit : Literal → Expr
| mdata : MData → Expr → Expr
| proj : Name → Nat → Expr → Expr

Let us review the main constructors:

Expr.const name levels represents a constant called name, such as Nat.add
or N. The levels argument represents universe levels, a concept that will be
explained in Chapter 12. For example, Expr.const ’’Nat.add [] represents
Nat.add and Expr.const ’’Nat [] represents Nat (i.e., N).
Expr.sort level is used to represent the types of types. For example, Expr.
sort Level.zero stands for Prop, and Expr.sort (Level.succ Level.zero)
stands for Type.
Expr.fvar id represents a free variable in the local context (e.g., a, h). The
id argument is a unique identifier for the variable.
Expr.mvar id represents a metavariable, i.e., a variable ?m with a question
mark. The id argument is a unique identifier for the metavariable.
Expr.app t u represents the application of a function t to an argument u. For
example, Expr.app (Expr.const ’’Nat.succ [] (Expr.const ’’Nat.zero
[]) represents Nat.succ Nat.zero.
Expr.lam name σ t bi represents an anonymous function (or λ-expression).
The name argument is the bound variable’s name, the σ argument is the
bound variable’s type, the t argument is the function’s body, and the bi
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argument stores whether the variable is an explicit ( ), implicit { }, or type
class [ ] argument.
Expr.bvar i represents a bound variable, using a notation known as De
Bruijn index. Expr.var 0 refers to the variable bound by the closest binder,
Expr.var 1 refers to the variable bound by the second closest binder, and
so on. Thus,

Expr.lam ’x (Expr.const ’’Nat []) (Expr.bvar 0)
BinderInfo.default

represents fun x : N 7→ x, and

Expr.lam ’x (Expr.const ’’Nat [])
(Expr.lam ’y (Expr.const ’’Nat []) (Expr.bvar 1)

BinderInfo.default)
BinderInfo.default

represents fun x y : N 7→ x.
Expr.forallE name σ τ bi represents a possibly dependent function type.
The name argument is the name of the bound variable, the σ argument is the
domain type, the τ argument is the result type, and bi is as for Expr.lam
above. For example,

Expr.forallE ’n (Expr.const ’’Nat [])
(Expr.app (Expr.const ’’Even []) (Expr.bvar 0))
BinderInfo.default

represents (n : N)→ Even n (also written ∀n : N, Even n), and

Expr.forallE ’dummy (Expr.const ’Nat []) (Expr.const ’Bool [])
BinderInfo.default

represents N→ Bool.

8.6 Second Example: A Conjunction-Destructing Tactic

In this and the next section, we define two further tactics that accomplish well-
defined tasks. The first of these two tactics, called destruct_and, automates the
elimination of conjunctions in premises. Our aim is to automate proofs such as
the following:

theorem abc_a (a b c : Prop) (h : a ∧ b ∧ c) :
a :=
And.left h

theorem abc_b (a b c : Prop) (h : a ∧ b ∧ c) :
b :=
And.left (And.right h)

theorem abc_bc (a b c : Prop) (h : a ∧ b ∧ c) :
b ∧ c :=
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And.right h

theorem abc_c (a b c : Prop) (h : a ∧ b ∧ c) :
c :=
And.right (And.right h)

In each case, we would like to simply write by destruct_and h as the proof.
Our tactic relies on a helper function, which takes as argument a proof term

hP (initially the hypothesis h) from which we extract conjuncts:

partial def destructAndExpr (hP : Expr) : TacticM Bool :=
withMainContext

(do
let target ← getMainTarget
let P ← inferType hP
let eq ← isDefEq P target
if eq then

let goal ← getMainGoal
MVarId.assign goal hP
return true

else
match Expr.and? P with
| Option.none => return false
| Option.some (Q, R) =>

let hQ ← mkAppM ’’And.left #[hP]
let success ← destructAndExpr hQ
if success then

return true
else

let hR ← mkAppM ’’And.right #[hP]
destructAndExpr hR)

Like in hypothesis, we pass the entire do block to the withMainContext func-
tion. This ensures that inferType and isDefEq operate within the right local con-
text. Inside the do block, we first extract the first goal’s target and hP’s type (typ-
ically, its proposition) P. If they are equal up to computation and instantiation
of metavariables, we close the goal by assigning to its metavariable, as we did in
the hypothesis example, and we return true to indicate success. Otherwise, we
check whether hP’s proposition is of the form Q ∧ R. If so, we call the helper func-
tion recursively with the proof term hQ := And.left hP, which is a proof of Q. If
this succeeds, we are done; otherwise, we try the proof term hR := And.right hP,
which is a proof of R.

Note the presence of the keyword partial at the front of the function def-
inition. It is needed here because Lean failed to prove that the function always
terminates. Since the function will only be used as a metaprogram, and not inside
a proposition, termination is optional, and we can disable the termination check
by specifying partial.

Also noteworthy is the mkAppM function, which is used to construct a curried
application of a constant to an array of arguments. Arrays are similar to lists but
are written with a prefixed # (e.g., #[1, 2, 3]). Using mkAppM is more convenient
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than applying the Expr.app constructor multiple times. Additionally, mkAppM al-
lows us to omit implicit arguments such as the propositions Q and R, which we
would otherwise have to provide as arguments to And.left and And.right.

The main function has very little to do:

def destructAnd (name : Name) : TacticM Unit :=
withMainContext

(do
let h ← getFVarFromUserName name
let success ← destructAndExpr h
if ! success then

failure)

elab "destruct_and" h:ident : tactic =>
destructAnd (getId h)

The function retrieves the hypothesis h using getFVarFromUserName and calls the
helper function. If the helper returns false, the tactic fails.

We can now use our new widget on the motivating examples:

theorem abc_a_again (a b c : Prop) (h : a ∧ b ∧ c) :
a :=
by destruct_and h

theorem abc_b_again (a b c : Prop) (h : a ∧ b ∧ c) :
b :=
by destruct_and h

theorem abc_bc_again (a b c : Prop) (h : a ∧ b ∧ c) :
b ∧ c :=
by destruct_and h

/- This is successful because ’a ∧ b ∧ c ’is grouped as ’a ∧ (b
∧ c) ’.

Why would it fail on ’(a ∧ b) ∧ c ’? -/

theorem abc_c_again (a b c : Prop) (h : a ∧ b ∧ c) :
c :=
by destruct_and h

The following new constants were used in the above metaprogram:

inferType : Expr→ TacticM Expr
Expr.and? : Expr→ Option (Expr × Expr)

mkAppM : Name→ Array Expr→ TacticM Expr
getFVarFromUserName : Name→ TacticM Expr

8.7 Third Example: A Direct Proof Finder

Sometimes we state a theorem, prove it, and later realize that the theorem al-
ready exists. This can be prevented using prove_direct, a tactic that traverses all



120 Chapter 8. Metaprogramming

available theorems and checks whether one of them can prove the current goal.
We will review its code in steps.

The first step is a function isTheorem that returns true if a declaration is an
axiom or a theorem and false otherwise:

def isTheorem : ConstantInfo → Bool
| ConstantInfo.axiomInfo _ => true
| ConstantInfo.thmInfo _ => true
| _ => false

We will use this function to filter out the declarations that do not interest us.
The next function applies the theorem named name to the current goal:
def applyConstant (name : Name) : TacticM Unit :=

do
let cst ← mkConstWithFreshMVarLevels name
liftMetaTactic (fun goal 7→ MVarId.apply goal cst)

Given a name, the mkConstWithFreshMVarLevels function creates an expression
cst representing the constant. The allusion to “fresh metavariable levels” in the
function’s name will become clearer in Chapter 12. MVarId.apply (not to be con-
fused with MVarId.assign) then applies the constant to the current goal, setting
?m := cst ?m1 . . . ?mn and returning the fresh metavariables ?mj, which represent
the premises of cst.

The liftMetaTactic function retrieves the identifier of the first goal, runs the
given function on the goal within the lower-level MetaM monad, and replaces the
goal with the subgoals returned by the function.

The next function implements a combinator that behaves like <;> but that can
be used from a metaprogram:

def andThenOnSubgoals (tac1 tac2 : TacticM Unit) :
TacticM Unit :=
do

let origGoals ← getGoals
let mainGoal ← getMainGoal
setGoals [mainGoal]
tac1
let subgoals1 ← getUnsolvedGoals
let mut newGoals := []
for subgoal in subgoals1 do

let assigned ← MVarId.isAssigned subgoal
if ! assigned then

setGoals [subgoal]
tac2
let subgoals2 ← getUnsolvedGoals
newGoals := newGoals ++ subgoals2

setGoals (newGoals ++ List.tail origGoals)

The TacticM monad keeps track of the current goals to prove. We can retrieve
the list using getGoals and set it using setGoals. Setting the list of subgoals is
useful if we want the tactic to temporarily focus on specific subgoals.

Here, we first focus on the first goal (setGoals [mainGoal]) and invoke the
first tactic. For each subgoal that emerges, we focus on it (setGoals [subgoal])
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and invoke the second tactic. All the unsolved subsubgoals emerging from the
second tactic are collected in the mutable variable newGoals. Since proving a
goal can sometimes instantiate another metavariable, we check at each iteration
whether the current subgoal metavariable is assigned and skip the subgoal if it is.
At the end, we update the goals to include all the pending goals: those in newGoals
and all but the first goal of origGoals, which we have not considered.

In general, at the end of a tactic, we should make sure that the list of goals
consists of all goals that remain to be proved. Otherwise, we may get cryptic errors
such as

declaration has metavariables

We also need a tactic that attempts to prove the goal using a theorem specified
by its name and that invokes hypothesis to prove any emerging subgoals:

def proveUsingTheorem (name : Name) : TacticM Unit :=
andThenOnSubgoals (applyConstant name) hypothesis

This is the programmatic equivalent of the proof apply name <;> hypothesis.
Finally, we are ready to review the main function:

def proveDirect : TacticM Unit :=
do

let origGoals ← getUnsolvedGoals
let goal ← getMainGoal
setGoals [goal]
let env ← getEnv
for (name, info)

in SMap.toList (Environment.constants env) do
if isTheorem info && ! ConstantInfo.isUnsafe info then

try
proveUsingTheorem name
logInfo m!"Proved directly by {name}"
setGoals (List.tail origGoals)
return

catch _ =>
continue

failure

elab "prove_direct" : tactic =>
proveDirect

We focus on the first goal, then iterate over all constants declared in the environ-
ment. If the constant is a theorem that is not so-called unsafe, we try to apply it
using our helper proveUsingTheorem. If this succeeds, we print “Proved directly
by name,” where name is the name of the theorem, and return. On failure, we keep
iterating. If the entire iteration is exhausted, we report a failure.

Here is the tactic in action:

theorem Nat.symm (x y : N) (h : x = y) :
y = x :=
by prove_direct
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This prints “Proved directly by symm.” The message is helpful because we can apply
the specified theorem directly instead of relying on the relatively slow prove_direct
tactic. Specifically, we can apply the theorem symm in conjunction with hypothesis
as follows:

theorem Nat.symm_manual (x y : N) (h : x = y) :
y = x :=
by

apply symm
hypothesis

Here is a list of new constants featured in this example:

mkConstWithFreshMVarLevels : Name→ TacticM Expr
liftMetaTactic : (MVarId→ MetaM (List MVarId))→

TacticM Unit
MVarId.apply : MVarId→ Expr→ MetaM (List MVarId)

getGoals : TacticM (List MVarId)
setGoals : List MVarId→ TacticM Unit

MVarId.isAssigned : MVarId→ TacticM Bool
getEnv : TacticM Environment

SMap.toList : ConstMap→ List (Name × ConstantInfo)
Environment.constants : Environment→ ConstMap
ConstantInfo.isUnsafe : ConstantInfo→ Bool

This concludes our review of prove_direct. A similar, more sophisticated tac-
tic is available as apply? in mathlib.

8.8 Miscellaneous Tactics

Although the focus of this chapter was on developing new tactics, we encountered
three predefined tactics.

skip

The skip tactic succeeds without doing anything. It is sometimes useful as a build-
ing block when we develop custom tactics.

done

The done tactic raises a failure if there are some goals left; otherwise, it succeeds
without doing anything. Like skip, it can be useful as a building block.

apply?

The apply? tactic searches the loaded libraries for a lemma that exactly proves
the goal. On success, it suggests a tactic invocation of the form exact . . . , which
can be inserted in the formalization.
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8.9 Summary of New Lean Constructs

Declaration

partial prefixes declarations of possibly nonterminating metaprograms

Quotations

’n quotes a literal name
’’n quotes a literal name with elaboration and checking

Tactics

apply? searches for a theorem that proves the current goal
done fails if there are some goals left
skip does nothing

Tactic Combinators

<;> invokes the second tactic on all subgoals from the first tactic
all_goals invokes a tactic once on each goal, expecting only successes
any_goals invokes a tactic once on each goal, expecting at least one success
first | · · · | · · · tries the tactics in turn until one succeeds
repeat’ repeatedly invokes a tactic on all goals and subgoals until failure
solve | · · · | · · · tries to fully prove the current goal using the tactics in turn
try tries to invoke a tactic; does nothing on failure
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Chapter 9

Operational Semantics

In this and the next two chapters, we will see how to use Lean to specify the syntax
and semantics of programming languages, to prove properties of the semantics,
and to reason about concrete programs.

This chapter is heavily inspired by Chapter 7 of Concrete Semantics: With Isa-
belle/HOL [23].

9.1 Formal Semantics

A formal semantics allows us to specify and reason about a programming language
and about individual programs written in that language. It can form the basis
of verified compilers, interpreters, verifiers, static analyzers, type checkers, and
more. Without formal proofs, these tools are almost always wrong.

Consider WebAssembly, a new machine-like language for web browsers, de-
signed as a portable target for compiling high-level languages such as C++ and
Rust. A researcher, Conrad Watt [29], formalized its semantics and type system
using the Isabelle/HOL proof assistant. He found many issues (our italics):

We have produced a full Isabelle mechanisation of the core execution
semantics and type system of the WebAssembly language. In addition,
we have created a mechanised proof for the type soundness properties
stated in the working group’s paper. In order to complete this proof,
several deficiencies in the official WebAssembly specification, uncov-
ered by our proof and modelling work, needed to be corrected by the
specification authors. In some cases, these meant that the type system
was originally unsound.
We have maintained a constructive dialogue with elements of the work-
ing group, mechanising and verifying new features as they are added
to the specification. In particular, the mechanism by which a Web-
Assembly implementation interfaces with its host environment was
not formally specified in the working group’s original paper. Extend-
ing our mechanisation to model this feature revealed a deficiency in
the WebAssembly specification that sabotaged the soundness of the
type system.

Watt’s research is only one example among many. Proof assistants are widely
used for programming language research. Every year, around 10%–20% of papers
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presented at the Principles of Programming Languages (POPL) conference are for-
malized. This is possible because comparatively little machinery is needed to get
started. The proofs tend to have lots of cases, which is a good match for comput-
ers. Moreover, proof assistants are extremely convenient to keep track of what
needs to be changed as we extend a programming language with more features.

9.2 A Minimalistic Imperative Language

WHILE1 is a minimalistic imperative language with the following grammar:

S ::= skip (no-op)
| x := a (assignment)
| S; S (sequential composition)
| if b then S else S (conditional statement)
| while b do S (while loop)

where S stands for a statement (also called command or program), x for a program
variable, a for an arithmetic expression, and b for a Boolean expression.

In our grammar, we deliberately leave the syntax of arithmetic and Boolean
expressions unspecified. In Lean, we have the choice:

We can use a type such as AExp from Section 2.1 and similarly for Booleans.
We can simply decide that an arithmetic expression is a function from states
to numbers (e.g., State→ N) and a Boolean expression is a predicate over
states (e.g., State→ Bool or State→ Prop). A State is a mapping from pro-
gram variables to values. Thus, x + y + 1 would be represented by the func-
tion fun s : State 7→ s "x" + s "y" + 1, and a ̸= b would be represented by
the predicate fun s : State 7→ s "a" ̸= s "b".

These two options correspond to the difference between deep and shallow
embeddings. A deep embedding of some syntax (expression, formula, program,
etc.) consists of an abstract syntax tree specified in the proof assistant (e.g., AExp)
with a semantics (e.g., eval). In contrast, a shallow embedding simply reuses the
corresponding mechanisms from the logic (e.g., functions and predicates).

A deep embedding allows us to reason about a program’s syntax. A shallow
embedding is more lightweight, because we can use it directly, without having to
define a semantics. A shallow embedding is its own semantics.

In Chapter 7, we used a shallow embedding of effectful programs. Here, we will
use a deep embedding of programs (which we find interesting and want to study
closely) and a shallow embedding of arithmetic and Boolean expressions (which
we find less interesting). Our Lean definition of programs follows:

inductive Stmt : Type where
| skip : Stmt
| assign : String → (State → N) → Stmt
| seq : Stmt → Stmt → Stmt
| ifThenElse : (State → Prop) → Stmt → Stmt → Stmt
| whileDo : (State → Prop) → Stmt → Stmt

1Fans of backronyms might enjoy this one: Weak Hypothetical Imperative Language Example.
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The infix syntax S; T abbreviates Stmt.seq S T.
The correspondence between the inductive type’s constructors and the WHILE

grammar rules should be clear. Variables are represented by strings. The type
State is defined as String→ N, a mapping from variable names to values. For
simplicity, our program variables are all of type natural number, and all possible
variable names exist in the state and are assigned a value.

The following small program illustrates deep embedding:

def sillyLoop : Stmt :=
Stmt.whileDo (fun s 7→ s "x" > s "y")

(Stmt.skip;
Stmt.assign "x" (fun s 7→ s "x" - 1))

9.3 Big-Step Semantics

An operational semantics corresponds to an idealized interpreter. There are two
main variants: big-step semantics and small-step semantics. We will start by giv-
ing a big-step semantics to our WHILE language.

In a big-step operational semantics (also called natural semantics), judgments
have the form (S, s)⇒■⇒ t and the following intuitive interpretation:

Starting in a state s, executing S may terminate in the state t.

For deterministic languages, since programs always have a single outcome, “may
terminate” means the same as “must terminate” or “terminates.”

In accordance with the definition of WHILE programs, a state s is a function of
type String→ N. An example judgment follows:

(x := x + y; y := 0, [x 7→ 3, y 7→ 5])⇒■⇒ [x 7→ 8, y 7→ 0]

We use the informal notation [x 7→ 3, y 7→ 5] to represent the function fun v 7→
if v = "x" then 3 else if v = "y" then 5 else 0 and similarly for [x 7→ 8, y 7→ 0].
Intuitively, the judgment holds.

The traditional way to specify such a semantics is through a formal system of
derivation rules, in the style of the typing rules presented in Sections 1.3 and 4.6.
The derivation rules for big-step semantics judgments are given below. The rules
can be seen as an idealized interpreter for WHILE programs.

Skip
(skip, s)⇒■⇒ s

Assign
(x := a, s)⇒■⇒ s[x 7→ a s]

(S, s)⇒■⇒ t (T, t)⇒■⇒ u
Seq

(S; T, s)⇒■⇒ u

(S, s)⇒■⇒ t
If-True if b s is true

(if b then S else T, s)⇒■⇒ t

(T, s)⇒■⇒ t
If-False if b s is false

(if b then S else T, s)⇒■⇒ t
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(S, s)⇒■⇒ t (while b do S, t)⇒■⇒ u
While-True if b s is true

(while b do S, s)⇒■⇒ u

While-False if b s is false
(while b do S, s)⇒■⇒ s

In the rules, a s denotes the value of arithmetic expression a in state s, and
similarly for b s. Moreover, the syntax s[x 7→ n] represents the state that is iden-
tical to s except that it maps the variable x to n. Formally:

s[x 7→ n] = (fun v 7→ if v = x then n else s v)

This syntax is provided by LoVelib.
As an exercise, let us derive the example judgment above. Let s := [x 7→ 3,

y 7→ 5], t := [x 7→ 8, y 7→ 5], and u := [x 7→ 8, y 7→ 0]. Then we have

Assign
(x := x + y, s)⇒■⇒ t

Assign
(y := 0, t)⇒■⇒ u

Seq
(x := x + y; y := 0, s)⇒■⇒ u

The derivation rules can be read intuitively. Consider Seq:

If (1) executing S in state s leads to state t and (2) executing T in state
t leads to state u, then executing the sequential composition S; T in
state s leads to state u.

The conditions (1) and (2) correspond to the two premises of Seq.
The most complicated rule is undoubtedly While-True. Intuitively, it can be

understood as follows:

Assume condition b is true in state s. If (1) executing S in state s leads
to state t and (2) executing while b do S from state t leads to state u,
then executing while b do S in state s leads to state u.

Another way to think about While-True is in terms of loop unrolling. If the loop
condition is true, while b do S is equivalent to the compound statement S; while
b do S. The two premises of While-True correspond to the two premises of the
instance of the Seq rule for S; while b do S.

In Lean, a big-step semantics judgment is represented by an inductive predi-
cate whose introduction rules closely follow the derivation rules above:

inductive BigStep : Stmt × State → State → Prop where
| skip (s) :

BigStep (Stmt.skip, s) s
| assign (x a s) :

BigStep (Stmt.assign x a, s) (s[x 7→ a s])
| seq (S T s t u) (hS : BigStep (S, s) t)

(hT : BigStep (T, t) u) :
BigStep (S; T, s) u

| if_true (B S T s t) (hcond : B s)
(hbody : BigStep (S, s) t) :

BigStep (Stmt.ifThenElse B S T, s) t
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| if_false (B S T s t) (hcond : ¬ B s)
(hbody : BigStep (T, s) t) :

BigStep (Stmt.ifThenElse B S T, s) t
| while_true (B S s t u) (hcond : B s)

(hbody : BigStep (S, s) t)
(hrest : BigStep (Stmt.whileDo B S, t) u) :

BigStep (Stmt.whileDo B S, s) u
| while_false (B S s) (hcond : ¬ B s) :

BigStep (Stmt.whileDo B S, s) s

We use implicit arguments, within curly braces, for many of the variables corre-
sponding to the derivation rule’s mathematical variables.

Using an inductive predicate as opposed to a recursive function allows us
to cope with nontermination (a diverging while) and, for languages richer than
WHILE, nondeterminism. It also arguably provides a nicer syntax, closer to the
judgment rules that are traditionally used in the scientific literature. If we were
instead to attempt a recursive definition such as

def eval : Stmt → State → State
| Stmt.skip, s => s
| Stmt.assign x a, s => s[x 7→ a s]
| Stmt.ifThenElse b S T, s =>

if b s then eval S s else eval T s
| S; T, s => eval T (eval S s)
| Stmt.whileDo b S, s =>

if b s then eval (Stmt.whileDo b S) (eval S s) else s

we would face nontermination of the Stmt.whileDo case. Indeed, since the pro-
gram Stmt.whileDo (fun _ 7→ True) Stmt.skip loops forever, trying to evaluate
it using eval would never return.

Equipped with a big-step semantics, we can reason about concrete programs
such as the one defined in Section 9.2 and prove theorems such as the following:

theorem sillyLoop_from_1_BigStep :
(sillyLoop, (fun _ 7→ 0)["x" 7→ 1]) ⇒■⇒ (fun _ 7→ 0) :=
by

rw [sillyLoop]
apply BigStep.while_true
{ simp }
{ apply BigStep.seq

{ apply BigStep.skip }
{ apply BigStep.assign } }

{ simp
apply BigStep.while_false
simp }

9.4 Properties of the Big-Step Semantics

Equipped with a big-step semantics, we can reason about concrete programs,
proving theorems relating final states with initial states. Perhaps more interest-
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ingly, we can prove properties of the programming language, such as determinism
and nontermination.

We start with determinism. It may seem like a trivial property, but it is easy
to mistype a rule and obtain nondeterminism. For example, in the rule for assign-
ment, if we mistakenly write BigStep (Stmt.assign x a, s) (s[y 7→ a s]) with y
instead of x, we suddenly can use the rule to modify any variable y we please. In
other words, an execution of the program could modify any variable at random.
So let us verify that our WHILE language really is deterministic:

theorem BigStep_deterministic {Ss l r} (hl : Ss ⇒■⇒ l)
(hr : Ss ⇒■⇒ r) :

l = r

The Lean proof is in the demonstration file associated with this chapter. For tech-
nical reasons, the pair (S, s) is represented by a single variable Ss. We content
ourselves with an informal proof sketch:

The proof is by rule induction over (S, s)⇒■⇒ l.
Case Skip: To have (skip, s)⇒■⇒ l or (skip, s)⇒■⇒ r, we need l = r
= s.
Case Assign: Similar to Skip.
Case Seq: We have the hypotheses (S, s)⇒■⇒ t, (T, t) ⇒■⇒ l, (S, s)
⇒■⇒ t’, and (T, t’)⇒■⇒ r and the induction hypotheses ∀r, (S, s)
⇒■⇒ r→ t = r and ∀r, (T, t)⇒■⇒ r→ l = r. From the first induction
hypothesis together with (S, s)⇒■⇒ t’, we derive t = t’. From the sec-
ond induction hypothesis together with (T, t’)⇒■⇒ r, we derive l = r.
Case If-True: Since b s is true, (if b then S else T, s) ⇒■⇒ r can only
have been derived using If-True and thus (S, s)⇒■⇒ r. The induction
hypothesis is ∀r, (S, s)⇒■⇒ r→ l = r. We can apply (S, s)⇒■⇒ r to it
to obtain l = r.
Case If-False: Similar to If-True.
Case While-True: Similar to Seq.
Case While-False: Similar to Skip. ⊓⊔

Given that the WHILE language is deterministic, for the big-step semantics,
termination would amount to the following:

theorem BigStep_terminates {S s} :
∃t, (S, s) ⇒■⇒ t

This property means that for every statement S and state s, there exists a state
t such that executing S starting in s may terminate in t. Because WHILE is de-
terministic, “may terminate” means the same as “must terminate.” However, the
property does not hold.

When reasoning about an inductive predicate, it is often convenient to use
inversion rules (Section 6.5). Accordingly, we prove the following rules:

@[simp] theorem BigStep_skip_Iff {s t} :
(Stmt.skip, s) ⇒■⇒ t ↔ t = s
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@[simp] theorem BigStep_assign_Iff {x a s t} :
(Stmt.assign x a, s) ⇒■⇒ t ↔ t = s[x 7→ a s]

@[simp] theorem BigStep_seq_Iff {S T s u} :
(S; T, s) ⇒■⇒ u ↔ (∃t, (S, s) ⇒■⇒ t ∧ (T, t) ⇒■⇒ u)

@[simp] theorem BigStep_if_Iff {B S T s t} :
(Stmt.ifThenElse B S T, s) ⇒■⇒ t ↔
(B s ∧ (S, s) ⇒■⇒ t) ∨ (¬ B s ∧ (T, s) ⇒■⇒ t)

theorem BigStep_while_Iff {B S s u} :
(Stmt.whileDo B S, s) ⇒■⇒ u ↔
(∃t, B s ∧ (S, s) ⇒■⇒ t ∧ (Stmt.whileDo B S, t) ⇒■⇒ u)
∨ (¬ B s ∧ u = s)

@[simp] theorem BigStep_while_true_Iff {B S s u}
(hcond : B s) :

(Stmt.whileDo B S, s) ⇒■⇒ u ↔
(∃t, (S, s) ⇒■⇒ t ∧ (Stmt.whileDo B S, t) ⇒■⇒ u)

@[simp] theorem BigStep_while_false_Iff {B S s t}
(hcond : ¬ B s) :

(Stmt.whileDo B S, s) ⇒■⇒ t ↔ t = s

We add most of the rules to the simp set. We leave out BigStep_while_Iff
because it makes simp loop.

9.5 Small-Step Semantics

A limitation of big-step semantics is that they do not let us reason about interme-
diate states. From a judgment (S, s)⇒■⇒ t, all we see is the initial state s and the
final state t. This is too coarse-grained to reason about multithreaded programs,
where several processes can interact with each other’s intermediate states. More-
over, for nondeterministic languages, big-step semantics offer no general way to
express termination: A judgment indicates a possibility (executing S in state s may
result in state t), not a necessity.

Small-step operational semantics provide a finer view. The transition predi-
cate⇒ has type Stmt × State→ Stmt × State→ Prop. Intuitively, (S, s)⇒ (T,
t) means that executing one step of program S in state s leaves the program T to
be executed, in state t. If there is nothing left to be executed, we put skip.

An execution is a finite or infinite chain (S0, s0)⇒ (S1, s1)⇒ · · · of “small”
⇒ steps. A pair (S, s) is called a configuration; it is final if no transition of the
form (S, s)⇒ (T, t) is possible, for any (T, t). A possible execution follows:

(x := x + y; y := 0, [x 7→ 3, y 7→ 5])
⇒ (skip; y := 0, [x 7→ 8, y 7→ 5])
⇒ (y := 0, [x 7→ 8, y 7→ 5])
⇒ (skip, [x 7→ 8, y 7→ 0])

If we take the analogy of a computer processor, the S component of a con-
figuration (S, s) can be thought of as a program counter, which indicates which



134 Chapter 9. Operational Semantics

instructions should be executed next. The step-by-step execution of a program
resembles running a program in a debugger with a breakpoint at each step.

The valid small-step judgments are given by derivation rules:

Assign
(x := a, s)⇒ (skip, s[x 7→ a s])

(S, s)⇒ (S’, s’)
Seq-Step

(S; T, s)⇒ (S’; T, s’)

Seq-Skip
(skip; T, s)⇒ (T, s)

If-True if b s is true
(if b then S else T, s)⇒ (S, s)

If-False if b s is false
(if b then S else T, s)⇒ (T, s)

While
(while b do S, s)⇒ (if b then (S; while b do S) else skip, s)

The rules are reminiscent of the tennis game transition system of Section 6.1.2.
These, too, specified small steps: from 0–0 to 15–0, to 15–15, and so on.

Unlike in the big-step semantics, there is no rule for skip in the small-step se-
mantics. This is because a configuration of the form (skip, s) is considered final;
skip is understood as the statement whose execution is trivial. By inspection of
the rules, we can convince ourselves that a configuration is final if and only if its
first component is skip.

Two rules concern sequential composition S; T. The first rule is applicable if
some progress can be made executing S. But if S is skip, no progress can be made
and the second rule applies.

The rules for if check the condition b and, depending on its truth value, put
the then or the else branch as the remaining computation to perform.

For the while loop, there is a single unconditional rule that expands one iter-
ation of the loop, introducing an if statement. It is then the role of the If-True
and If-False rules to process the if. In the If-True case, we eventually reach the
while loop again. This can continue forever for infinite loops.

In Lean, the small-step semantics is specified as follows:

inductive SmallStep : Stmt × State → Stmt × State → Prop
where

| assign (x a s) :
SmallStep (Stmt.assign x a, s) (Stmt.skip, s[x 7→ a s])

| seq_step (S S’ T s s’) (hS : SmallStep (S, s) (S’, s’)) :
SmallStep (S; T, s) (S’; T, s’)

| seq_skip (T s) :
SmallStep (Stmt.skip; T, s) (T, s)

| if_true (B S T s) (hcond : B s) :
SmallStep (Stmt.ifThenElse B S T, s) (S, s)

| if_false (B S T s) (hcond : ¬ B s) :
SmallStep (Stmt.ifThenElse B S T, s) (T, s)

| whileDo (B S s) :
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SmallStep (Stmt.whileDo B S, s)
(Stmt.ifThenElse B (S; Stmt.whileDo B S) Stmt.skip, s)

Based on a small-step semantics, we can define a big-step semantics as fol-
lows:

(S, s)⇒■⇒ t if and only if (S, s)⇒* (skip, t)

where p* denotes the reflexive transitive closure (RTC) of a binary predicate p.
Alternatively, if we have already defined a big-step semantics, we can prove the
above equivalence theorem to validate our definitions.

The main disadvantage of small-step semantics is that we now have two predi-
cates,⇒ and⇒*, and the derivation rules and proofs tend to be more complicated
than with big steps. This is clearly visible on the following example, in which we
need to apply the theorem

RTC.head : ?R ?a ?b→ RTC ?R ?b ?c→ RTC ?R ?a ?c

once for each small step:

theorem sillyLoop_from_1_SmallStep :
(sillyLoop, (fun _ 7→ 0)["x" 7→ 1]) ⇒*
(Stmt.skip, (fun _ 7→ 0)) :=
by

rw [sillyLoop]
apply RTC.head
{ apply SmallStep.whileDo }
{ apply RTC.head

{ apply SmallStep.if_true
simp }

{ apply RTC.head
{ apply SmallStep.seq_step

apply SmallStep.seq_skip }
{ apply RTC.head

{ apply SmallStep.seq_step
apply SmallStep.assign }

{ apply RTC.head
{ apply SmallStep.seq_skip }
{ apply RTC.head

{ apply SmallStep.whileDo }
{ apply RTC.head

{ apply SmallStep.if_false
simp }

{ simp
apply RTC.refl } } } } } } }

9.6 Properties of the Small-Step Semantics

We can prove that a configuration (S, s) is final if and only if S = skip. Doing so
ensures that we have not forgotten a derivation rule and hence that the small-
steps semantics cannot get stuck. The theorem statement is as follows:
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theorem SmallStep_final (S s) :
(¬ ∃T t, (S, s) ⇒ (T, t)) ↔ S = Stmt.skip

The proof is by structural induction on S.
Like the big-step semantics, the small-step semantics is deterministic:

theorem SmallStep_deterministic {Ss Ll Rr}
(hl : Ss ⇒ Ll) (hr : Ss ⇒ Rr) :

Ll = Rr

The proof is by rule induction on hl or hr.
For the small-step semantics, a configuration (S0, s0) terminates if all exe-

cutions starting in it are finite: (S0, s0)⇒ (S1, s1) ⇒ · · · ⇒ (Sn, sn). It is non-
terminating if there exists an infinite chain (S0, s0)⇒ (S1, s1)⇒ · · · . The pro-
gramming language as a whole is terminating if and only if all its configurations
terminate. It is easy to show that the WHILE language is nonterminating, by taking
S0 := Stmt.whileDo (fun _ 7→ True) Stmt.skip. For any s0, we then have

(S0, s0)⇒ (S0, s0)⇒ (S0, s0)⇒ · · ·

We can define inversion rules about the small-step semantics, such as these:

theorem SmallStep_skip {S s t} :
¬ ((Stmt.skip, s) ⇒ (S, t))

@[simp] theorem SmallStep_seq_Iff {S T s Ut} :
(S; T, s) ⇒ Ut ↔
(∃S’ t, (S, s) ⇒ (S’, t) ∧ Ut = (S’; T, t))
∨ (S = Stmt.skip ∧ Ut = (T, s))

@[simp] theorem SmallStep_if_Iff {B S T s Us} :
(Stmt.ifThenElse B S T, s) ⇒ Us ↔
(B s ∧ Us = (S, s)) ∨ (¬ B s ∧ Us = (T, s))

A more fundamental result is the equivalence between the big-step and the
small-step semantics:

theorem BigStep_Iff_RTC_SmallStep {Ss t} :
Ss ⇒■⇒ t ↔ Ss ⇒* (Stmt.skip, t)

Recall that⇒* denotes the reflexive transitive closure of the small-step predicate
⇒. The theorem’s proof is beyond the scope of this course. We refer to Chapter 7
of Concrete Semantics: With Isabelle/HOL [23] or to the demonstration file for this
chapter.
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Hoare Logic

If operational semantics corresponds to an idealized interpreter, Hoare logic cor-
responds to an idealized verifier. Hoare logic can be used to specify the semantics
of a programming language, but it is particularly convenient to reason about con-
crete programs and prove them correct. It is named after its inventor, Charles
Antony Richard (Tony) Hoare. Hoare logic is also called axiomatic semantics.

This chapter is heavily inspired by Chapter 12 of Concrete Semantics: With Isa-
belle/HOL [23].

10.1 Hoare Triples

Hoare logic is a framework for deducing valid correctness formulas in a mechan-
ical way, using a set of derivation rules. It allows us to reason directly about a
program’s syntax, without concerning ourselves with its operational semantics.
The approach is mechanical in the sense that the applicability of a derivation rule
can easily be checked.

We start by introducing Hoare logic abstractly, without any connection to Lean.
In a second step, we will see how we can embed Hoare logic judgments in Lean.
The basic judgments of Hoare logic are called Hoare triples. They have the form
{P} S {Q}, where S is a WHILE statement, and P and Q are logical formulas over the
program variables. For the moment, we imagine the formulas as syntactic objects
built using the familiar connectives and quantifiers. The intended meaning of a
Hoare triple is as follows:

If the precondition P is true before S is executed and the execution
terminates normally, the postcondition Q is true at termination.

This is a partial correctness statement: The program is correct if it terminates
normally; otherwise, the program might behave arbitrarily. For WHILE programs,
the only way not to terminate normally is to enter an infinite loop. For other
programming languages, infinite recursion and run-time errors such as division
by zero may also result in divergence or abnormal termination.

Intuitively, all of the Hoare triples below should be valid:

{True} b := 4 {b = 4}

{a = 2} b := 2 * a {a = 2 ∧ b = 4}

{b ≥ 5} b := b + 1 {b ≥ 6}

137



138 Chapter 10. Hoare Logic

{False} skip {b = 10}

{True} while i ̸= 10 do i := i + 1 {i = 10}

The first three Hoare triples should be fairly natural. The fourth triple is vacuously
true, since the precondition False can never be met. The part “If the precondition
P is true” of the definition of Hoare triple is always false; hence the triple is true.
The triple is equivalent to the proposition False→ b = 10, which holds for any
value of b. As for the fifth triple, there are no guarantees that control will escape
the loop (if i > 10 initially), but if it does escape, then the loop’s condition must
be false and hence we have the postcondition i = 10.

The following triples are bizarre but interesting:

{False} S {True}

{False} S {False}

{True} S {True}

{True} S {False}

The first two triples are true of any statement S (and therefore pointless): The
precondition is never satisfied, so any postcondition holds vacuously. The third
triple is always true as well, regardless of S. The fourth triple is true if S never
terminates (e.g., S := while True do skip); otherwise, it is false.

10.2 Hoare Rules

Below we give a complete set of derivation rules for reasoning about WHILE pro-
grams:

Skip
{P} skip {P}

Assign
{Q[a/x]} x := a {Q}

{P} S {R} {R} T {Q}
Seq

{P} S; T {Q}

{P ∧ B} S {Q} {P ∧ ¬B} T {Q}
If

{P} if B then S else T {Q}

{P ∧ B} S {P}
While

{P} while B do S {P ∧ ¬B}

P′ → P {P} S {Q} Q → Q′
Conseq

{P′} S {Q′}

In the Assign rule, the expression Q[a/x] denotes the condition Q in which all
occurrences of x are replaced by a. The rule is sometimes presented as

Assign
{Q[a]} x := a {Q[x]}

where [x] factors out the occurrences of x in Q.
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The Assign rule may seem counterintuitive because it works backwards: From
the postcondition, it computes a precondition. Nevertheless, it correctly captures
the semantics of the assignment statement, as illustrated below:

{0 = 0} x := 0 {x = 0}

{0 = 0 ∧ y = 5} x := 0 {x = 0 ∧ y = 5}

{x + 1 ≥ 5} x := x + 1 {x ≥ 5}

Using elementary arithmetic, we can simplify the computed preconditions; for
example, 0 = 0 is equivalent to True, and x + 1 ≥ 5 is equivalent to x ≥ 4.

The Seq rule requires us to come up with an intermediate condition R that
holds after executing S and before executing T. Here is an example of Seq in action:

Assign
{a = 2} b := a {b = 2}

Assign
{b = 2} c := b {c = 2}

Seq
{a = 2} b := a; c := b {c = 2}

The While rule is the most intricate. The condition P is called an invariant.
It is the pre- and the postcondition of the loop itself but also of its body. The
body’s precondition is strengthened with the knowledge that B must be true be-
fore executing the body. Similarly, the loop’s postcondition is strengthened with
the knowledge that B must be false when the loop exits.

Consider an execution of a loop with n iterations. Suppose that the initial state
is s0 and that the state after the ith iteration of the loop is si. Then the following
conditions will hold:

P s0 P s1 ∧ B s1 · · · P sn−1 ∧ B sn−1 P sn ∧ ¬ B sn

If n = 0, we immediately have that P s0 ∧ ¬ B s0 and never enter the loop.
Conseq is the only rule that has logical formulas among its premises, as op-

posed to Hoare triples. These conditions must be discharged, whether using pen
and paper or a proof assistant. Conseq can be used to strengthen a precondition
(i.e., make it more restrictive), weaken a postcondition (i.e., make it less restric-
tive), or both. An example derivation follows:

x > 8 → x > 4
Assign

{x > 4} y := x {y > 4} y > 4 → y > 0
Conseq

{x > 8} y := x {y > 0}

Reading the tree from top to bottom, we have strengthened the triple’s precondi-
tion from x > 4 to x > 8 and weakened the postcondition from y > 4 to y > 0. We
can also read the tree from the bottom up: To prove the triple {x > 8} y := x
{y > 0}, it suffices to prove {x > 4} y := x {y > 4}, where the precondition is
weakened and the postcondition is strengthened.

Except for Conseq, the rules are syntax-driven: We know which rule to apply
in each case, simply by inspecting the statement at hand. For an assignment, we
apply Assign; for a while loop, we apply While; and so on.

The rules Seq, If, and Conseq are bidirectional: Their conclusions are of the
form {P} . . . {Q} for distinct mathematical variables P, Q. This can make them
convenient to apply. By combining the other rules with Conseq, we can derive
bidirectional variants:
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P→ Q
Skip′

{P} skip {Q}

P → Q[a/x]
Assign′

{P} x := a {Q}

{P ∧ B} S {P} P ∧ ¬B → Q
While′

{P} while B do S {Q}

As an exercise, you could try to derive each of these rules from Skip, Assign, or
While in conjunction with Conseq.

10.3 A Semantic Approach to Hoare Logic

A natural way to encode Hoare logic in Lean would be to proceed as we have done
for the big- and small-step semantics: Define a syntactic notion of Hoare triple
and an inductive predicate, with one introduction rule for each core Hoare rule;
to represent pre- and postconditions, use predicates on states (State → Prop).
Then we could prove soundness with respect to the big-step semantics, meaning
the following: Whenever {P} S {Q} is derivable, if P s and (S, s)⇒■⇒ t, then Q t.
This is merely a logical rendition of the intuitive meaning of a Hoare triple:

If the precondition P is true before S is executed (i.e., P s) and the ex-
ecution terminates normally (i.e., (S, s) ⇒■⇒ t), the postcondition Q is
true at termination (i.e., Q t).

Instead of pursuing this approach, we propose to define Hoare triples seman-
tically in Lean, in terms of the big-step semantics, so that they are correct by
definition. Then we will derive the Hoare rules as theorems, instead of stating
them as introduction rules. In conjunction with the use of predicates to represent
formulas, this approach is resolutely semantic.

Hoare triples (for partial correctness) are defined as follows:

def PartialHoare (P : State → Prop) (S : Stmt)
(Q : State → Prop) : Prop :=

∀s t, P s → (S, s) ⇒■⇒ t → Q t

Instead of writing PartialHoare P S Q, we introduce some syntactic sugar to allow
{* P *} (S) {* Q *}, which is closer to the informal syntax {P} S {Q}.

The core Hoare rules are stated as follows:

theorem skip_intro {P} :
{* P *} (Stmt.skip) {* P *}

theorem assign_intro (P) {x a} :
{* fun s 7→ P (s[x 7→ a s]) *} (Stmt.assign x a) {* P *}

theorem seq_intro {P Q R S T} (hS : {* P *} (S) {* Q *})
(hT : {* Q *} (T) {* R *}) :

{* P *} (S; T) {* R *}
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theorem if_intro {B P Q S T}
(hS : {* fun s 7→ P s ∧ B s *} (S) {* Q *})
(hT : {* fun s 7→ P s ∧ ¬ B s *} (T) {* Q *}) :

{* P *} (Stmt.ifThenElse B S T) {* Q *}

theorem while_intro (P) {B S}
(h : {* fun s 7→ P s ∧ B s *} (S) {* P *}) :

{* P *} (Stmt.whileDo B S) {* fun s 7→ P s ∧ ¬ B s *}

theorem consequence {P P’ Q Q’ S}
(h : {* P *} (S) {* Q *}) (hp : ∀s, P’ s → P s)
(hq : ∀s, Q s → Q’ s) :

{* P’ *} (S) {* Q’ *}

All of the above theorems have proofs based on the big-step semantics. Some
of the triples—for example, the precondition in assign_intro—need to refer to
the state. We then use an anonymous function to access it. Recall that P and fun
s 7→ P s are equal (by η-conversion). Moreover, for a premise written informally as
P→ Q, in Lean we must write ∀s, P s→ Q s. As in Chapter 9, the syntax s[x 7→ n]
in the assignment rule denotes the state that is identical to s except that it maps
x to n.

The following convenience rules can be derived from the core rules:

theorem consequence_left (P’) {P Q S}
(h : {* P *} (S) {* Q *}) (hp : ∀s, P’ s → P s) :

{* P’ *} (S) {* Q *}

theorem consequence_right (Q) {Q’ P S}
(h : {* P *} (S) {* Q *}) (hq : ∀s, Q s → Q’ s) :

{* P *} (S) {* Q’ *}

theorem skip_intro’ {P Q} (h : ∀s, P s → Q s) :
{* P *} (Stmt.skip) {* Q *}

theorem assign_intro’ {P Q x a}
(h : ∀s, P s → Q (s[x 7→ a s])):

{* P *} (Stmt.assign x a) {* Q *}

theorem seq_intro’ {P Q R S T} (hT : {* Q *} (T) {* R *})
(hS : {* P *} (S) {* Q *}) :

{* P *} (S; T) {* R *}

theorem while_intro’ {B P Q S} (I)
(hS : {* fun s 7→ I s ∧ B s *} (S) {* I *})
(hP : ∀s, P s → I s)
(hQ : ∀s, ¬ B s → I s → Q s) :

{* P *} (Stmt.whileDo B S) {* Q *}

Using the bidirectional assign_intro’, we can derive a forward version of the
assignment rule:
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theorem assign_intro_forward (P) {x a} :
{* P *}
(Stmt.assign x a)
{* fun s 7→ ∃n0, P (s[x 7→ n0]) ∧ s x = a (s[x 7→ n0]) *} :=
by

apply assign_intro’
intro s hP
apply Exists.intro (s x)
simp [*]

The variable n0 stands for the value of x before the assignment. Hence, in the
postcondition, s[x 7→ n0] denotes the state before the assignment. Since P is a
precondition, we have P (s[x 7→ n0]). In addition, the new value of x, given by
s x, must be equal to the value of the expression a evaluated in the old state
s[x 7→ n0].

The forward rule is less convenient than the backward rule, because the post-
condition contains an existential quantifier. It is possible to state a backward rule
in a similar style, revealing a hidden symmetry:

theorem assign_intro_backward (Q) {x a} :
{* fun s 7→ ∃n’, Q (s[x 7→ n’]) ∧ n’ = a s *}
(Stmt.assign x a)
{* Q *}

Notice that this existential quantifier can be eliminated using a one-point rule
(Section 4.3). We then get the familiar backward rule assign_intro, with fun s 7→
P (s[x 7→ a s]) as the precondition.

10.4 First Program: Exchanging Two Variables

Let us employ Hoare logic to verify our first program: a three-line program that
exchanges the values of its variables a and b, using t for temporary storage. The
program is defined as follows:

def SWAP : Stmt :=
Stmt.assign "t" (fun s 7→ s "a");
Stmt.assign "a" (fun s 7→ s "b");
Stmt.assign "b" (fun s 7→ s "t")

The correctness statement is as follows:

theorem SWAP_correct (a0 b0 : N) :
{* fun s 7→ s "a" = a0 ∧ s "b" = b0 *}
(SWAP)
{* fun s 7→ s "a" = b0 ∧ s "b" = a0 *}

The logical variables a0 and b0 “freeze” the initial value of the program variables
a and b so that we can refer to them in the postcondition. After all, it would make
no sense to use fun s 7→ s "a" = s "b" ∧ s "b" = s "a" as the postcondition.

The correctness proof follows:

by
apply PartialHoare.seq_intro’
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apply PartialHoare.seq_intro’
apply PartialHoare.assign_intro
apply PartialHoare.assign_intro
apply PartialHoare.assign_intro’
aesop

The applications of the sequential composition and assignment rules are guided
by the program’s syntax. There are two sequential compositions and three assign-
ments in the program and therefore as many invocations of the corresponding
rules. We end up with a very aesthetically challenged subgoal:

⊢⊢⊢ ∀s : State,
s "a" = a0 ∧ s "b" = b0 →
s["t" 7→ s "a"]["a" 7→ s["t" 7→ s "a"] "b"]
["b" 7→ s["t" 7→ s "a"]["a" 7→ s["t" 7→ s "a"] "b"] "t"] "a" = b0 ∧

s["t" 7→ s "a"]["a" 7→ s["t" 7→ s "a"] "b"]
["b" 7→ s["t" 7→ s "a"]["a" 7→ s["t" 7→ s "a"] "b"] "t"] "b" = a0

Fortunately, simp [*] at * can reduce the subgoal dramatically, and aesop can
even prove it fully automatically.

10.5 Second Program: Adding Two Numbers

Our second example computes m + n, leaving the result in m, using only these prim-
itive operations: k + 1, k - 1, and k ̸= 0 (for arbitrary k):

def ADD : Stmt :=
Stmt.whileDo (fun s 7→ s "n" ̸= 0)

(Stmt.assign "n" (fun s 7→ s "n" - 1);
Stmt.assign "m" (fun s 7→ s "m" + 1))

Because of the presence of a while loop, the proof is more involved:

theorem ADD_correct (n0 m0 : N) :
{* fun s 7→ s "n" = n0 ∧ s "m" = m0 *}
(ADD)
{* fun s 7→ s "n" = 0 ∧ s "m" = n0 + m0 *} :=
PartialHoare.while_intro’ (fun s 7→ s "n" + s "m" = n0 + m0)

(by
apply PartialHoare.seq_intro’
{ apply PartialHoare.assign_intro }
{ apply PartialHoare.assign_intro’

aesop })
(by aesop)
(by aesop)

The first step is to apply the derived while rule with a loop invariant. Our invariant
is that the sum of the program variables n and m must be equal to the desired
mathematical result n0 + m0, where n0 and m0 correspond to the initial values of n
and m, as required by the precondition.

How did we come up with this invariant? Even for a simple loop, finding a
suitable invariant can be challenging. The difficulty is that the invariant must
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1. be true before we enter the loop;
2. remain true after each iteration of the loop if it was true before the iteration;
3. be strong enough to imply the desired loop postcondition.

An invariant such as True meets requirements 1 and 2 but usually not 3. Similarly,
False meets requirements 2 and 3 but not 1. In practice, invariants tend to be of
the form

work done + work remaining = desired result
where + stands for some appropriate operator (not necessarily addition). When
we enter the loop, work done will often be 0 (or some other appropriate “zero”
value), and the invariant becomes

work remaining = desired result

This invariant would have to be provable at the beginning of the loop—either from
the postcondition of the previous statement or from the desired precondition of
the entire program if there is no previous statement. When we exit the loop, work
remaining should be 0 (or some variant thereof), and the invariant becomes

work done = desired result

Often, work done takes the form of a variable in which we accumulate the result,
whereas work remaining is similar to desired result but depends on program vari-
ables whose values change inside the loop and accounts for work done.

For the ADD program’s loop, the work done is m, the work remaining is n, and
the desired result is n0 + m0. When entering the loop, the invariant m + n = n0 + m0
holds because then m = m0 and n = n0. (Unusually, the work done is not 0 for this
example, because we reuse the input m as our accumulator, as an optimization.)
When exiting the loop, we have that n = 0, so the invariant becomes m = n0 + m0.
We can retrieve the result from m.

The while_intro’ theorem is used directly as a proof term. It gives rise to
three subgoals. The proofs that the invariant is implied by the desired precon-
dition and that it implies the desired postcondition are trivial: They consist of a
call to aesop. The only nontrivial subgoal is the condition that executing the body
maintains the invariant.

For this example, Hoare logic really helps. Reasoning directly about the oper-
ational semantics would be inconvenient, because we would need induction to
reason about the while loop. With Hoare logic, this induction is performed out
once and for all in the proof of the while_intro rule.

10.6 A Verification Condition Generator

Verification condition generators (VCGs) are programs that apply Hoare logic rules,
producing verification conditions that must be proved manually. We can think of
them as mechanical civil servants that take care of the Hoare logic bureaucracy.
As users, we must provide strong enough loop invariants as annotations in our
programs. Hundreds of program verification tools are based on these principles.

VCGs typically work backwards from the postcondition, using backward rules—
rules stated to have an arbitrary Q as their postcondition. This works well because
the central rule of Hoare logic—the assignment rule—is backward.
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We can use Lean’s metaprogramming framework to define a simple VCG. First,
we introduce a constant called Stmt.invWhileDo that carries a user-supplied in-
variant I in addition to the loop condition B and the body S:

def Stmt.invWhileDo (I B : State → Prop) (S : Stmt) : Stmt :=
Stmt.whileDo B S

We provide two Hoare rules for the construct: a backward rule and a bidirec-
tional rule. Both are justified in terms of the bidirectional while_intro’ rule:

theorem invWhile_intro {B I Q S}
(hS : {* fun s 7→ I s ∧ B s *} (S) {* I *})
(hQ : ∀s, ¬ B s → I s → Q s) :

{* I *} (Stmt.invWhileDo I B S) {* Q *} :=
while_intro’ I hS (by aesop) hQ

theorem invWhile_intro’ {B I P Q S}
(hS : {* fun s 7→ I s ∧ B s *} (S) {* I *})
(hP : ∀s, P s → I s) (hQ : ∀s, ¬ B s → I s → Q s) :

{* P *} (Stmt.invWhileDo I B S) {* Q *} :=
while_intro’ I hS hP hQ

The above rules simply use the invariant annotation as their invariant. When using
the framework, we will have to be careful to annotate all while loops with suit-
able invariants. If we specify a wrong invariant, we will face unprovable subgoals,
indicating that we must revise the invariant.

The code of the VCG is fairly concise:

def matchPartialHoare : Expr → Option (Expr × Expr × Expr)
| (Expr.app (Expr.app (Expr.app

(Expr.const ’’PartialHoare _) P) S) Q) =>
Option.some (P, S, Q)

| _ =>
Option.none

partial def vcg : TacticM Unit :=
do

let goals ← getUnsolvedGoals
if goals.length != 0 then

let target ← getMainTarget
match matchPartialHoare target with
| Option.none => return
| Option.some (P, S, Q) =>

if Expr.isAppOfArity S ’’Stmt.skip 0 then
if Expr.isMVar P then

applyConstant ’’PartialHoare.skip_intro
else

applyConstant ’’PartialHoare.skip_intro’
else if Expr.isAppOfArity S ’’Stmt.assign 2 then

if Expr.isMVar P then
applyConstant ’’PartialHoare.assign_intro

else
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applyConstant ’’PartialHoare.assign_intro’
else if Expr.isAppOfArity S ’’Stmt.seq 2 then

andThenOnSubgoals
(applyConstant ’’PartialHoare.seq_intro’) vcg

else if Expr.isAppOfArity S ’’Stmt.ifThenElse 3 then
andThenOnSubgoals

(applyConstant ’’PartialHoare.if_intro) vcg
else if Expr.isAppOfArity S ’’Stmt.invWhileDo 3 then
if Expr.isMVar P then

andThenOnSubgoals
(applyConstant ’’PartialHoare.invWhile_intro) vcg

else
andThenOnSubgoals

(applyConstant ’’PartialHoare.invWhile_intro’)
vcg

else
failure

elab "vcg" : tactic =>
vcg

The VCG extracts the first goal’s target and inspects it. If it is a Hoare triple,
the VCG inspects its precondition P and statement S. If the precondition is a meta-
variable (e.g., ?P), the VCG applies a backward rule (via the applyConstant func-
tion we defined in Section 8.7) if there exists one because this will instantiate the
metavariable. Otherwise, a bidirectional rule is used, with an arbitrary variable
as its precondition, which can be matched against the target’s precondition. For
while loops, we only consider programs that use Stmt.invWhileDo, because we
cannot guess the invariant programmatically.

The VCG calls itself recursively on all newly emerging subgoals for the com-
pound statements (via the andThenOnSubgoals function we defined in Section 8.7).

10.7 Second Program Revisited: Adding Two Numbers

Using the verification condition generator, we can revisit the correctness proof for
the ADD program presented above:

theorem ADD_correct_vcg (n0 m0 : N) :
{* fun s 7→ s "n" = n0 ∧ s "m" = m0 *}
(ADD)
{* fun s 7→ s "n" = 0 ∧ s "m" = n0 + m0 *} :=

show {* fun s 7→ s "n" = n0 ∧ s "m" = m0 *}
(Stmt.invWhileDo (fun s 7→ s "n" + s "m" = n0 + m0)

(fun s 7→ s "n" ̸= 0)
(Stmt.assign "n" (fun s 7→ s "n" - 1);
Stmt.assign "m" (fun s 7→ s "m" + 1)))

{* fun s 7→ s "n" = 0 ∧ s "m" = n0 + m0 *} from
by

vcg <;>
aesop
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First, we use show to annotate the while loop with an invariant. Recall that
the show command restates the goal in a computationally equivalent way. Here,
we use this facility to replace Stmt.whileDo by Stmt.invWhileDo, which equals
Stmt.whileDo by definition. The program and its pre- and postconditions are oth-
erwise the same as in the theorem statement.

We invoke vcg as the first proof step. This will apply all the necessary Hoare
rules and leave us with some subgoals, which are no match for aesop.

10.8 Hoare Triples for Total Correctness

The focus so far in this chapter has been on partial correctness. When we state the
Hoare triple {P} S {Q}, we claim that the final state will satisfy Q if the program S
terminates, but we say nothing when S does not terminate. In particular, we

can prove any postcondition for the diverging program while True do skip. This
is admittedly too liberal: If you are asked to program a sorting algorithm at an
exam, you should certainly not give while True do skip as your answer.

Total correctness is a stronger notion that asserts, in addition to partial cor-
rectness, that the program terminates normally. We first focused on partial cor-
rectness because it is simpler and because it is a necessary component of total
correctness anyway.

The Hoare triples for total correctness have the form [P] S [Q], with the fol-
lowing intended meaning:

If the precondition P holds before S is executed, the execution termi-
nates normally and the postcondition Q holds in the final state.

For deterministic programs, this can be expressed equivalently as follows:

If the precondition P holds before S is executed, there exists a state in
which execution terminates normally and the postcondition Q holds in
that state.

Here is an example Hoare triple that is valid:

[i ≤ 10] while i < 10 do i := i + 1 [i = 10]

For the WHILE language, the distinction between partial and total correctness
only concerns while loops (and programs containing them). The Hoare rule for
while must now be annotated by a variant v—a natural number that decreases
by one or more with each iteration:

[P ∧ b ∧ v = v0] S [P ∧ v < v0]
While-Var

[P] while b do S [P ∧ ¬b]

Here, v0 is a logical variable that freezes v’s initial value and whose scope is the
entire premise, whereas v is a mathematical variable (like P, b, and S). For the
example above, we could take 10 - i as the variant (or 50 - i or 1024 - i * i).

Consider an execution s0, s1, . . . , sn−1, sn corresponding to n loop iterations,
as in Section 10.2. The following conditions will hold:

P s0 P s1 ∧ b s1 · · · P sn−1 ∧ b sn−1 P sn ∧ ¬ b sn

v s0 > v s1 > · · · > v sn−1 > v sn





Chapter 11

Denotational Semantics

We now review a third way to specify the semantics of a programming language:
denotational semantics. A denotational semantics directly specifies the meaning
of programs as a mathematical object. If an operational semantics corresponds
to an idealized interpreter and a Hoare logic corresponds to an idealized verifier,
then a denotational semantics corresponds to an idealized compiler: a compiler
that translates the source program not to assembly language but directly to math-
ematics.

The core of this chapter is modeled closely after Chapter 11 of Concrete Se-
mantics: With Isabelle/HOL [23].

11.1 Compositionality

A denotational semantics defines the meaning of each program as a mathematical
object. Abstractly, it can be viewed as a function

J K : syntax→ semantics

A key property of denotational semantics is compositionality: The meaning of a
compound statement should be defined in terms of the meaning of its compo-
nents. Consider the straightforward definition

JSK = {(s, t) | (S, s)⇒■⇒ t}

in terms of the big-step semantics (⇒■⇒). Actually, because Lean supports only
variables on the left-hand side of the vertical bar, we must write

JSK = {st | (S, Prod.fst st)⇒■⇒ Prod.snd st}

This definition specifies the desired semantics, but it does not qualify as a deno-
tational semantics due to lack of compositionality: The meaning of the compound
statements (sequential composition, if–then–else, and while) is given directly,
without using the denotation of their components.

A fully compositional definition allows us to reason equationally about pro-
grams, which is often more convenient than using the introduction, elimination,
and inversion principles of ⇒■⇒. In essence, we want structurally recursive equa-
tions of the form

149
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JS ; TK = . . . JSK . . . JTK . . .
Jif B then S else TK = . . . JSK . . . JTK . . .

Jwhile B do SK = . . . JSK . . .

with no occurrences of S and T in the right-hand sides except as arguments to J K.
An evaluation function for arithmetic expressions

eval : AExp︸ ︷︷ ︸
syntax

→ (String→ Z)→ Z︸ ︷︷ ︸
semantics

satisfying equations such as

eval (AExp.add e1 e2) env = eval e1 env + eval e2 env

is a denotational semantics, because the semantics of AExp.add e1 e2 is defined
in terms of the semantics of e1 and of e2.

Denotational semantics are a natural match for arithmetic expressions but
also functional programs. Now we want a convenient denotational semantics for
imperative programs. Because of while loops, which are not guaranteed to ter-
minate, we need to develop some additional mathematical notions to reach the
point where we can formulate the desired semantics.

11.2 A Relational Denotational Semantics

Denotational semantics for deterministic languages are normally given as a func-
tion from prestate to poststate, but relations are more general and more conve-
nient to manipulate. We present a relational denotational semantics.

A denotational semantics of a program will be a mathematical object of type
Set (State × State). The relational approach was also used for the big-step se-
mantics, which took the form of a predicate of type State→ State→ Prop. These
two types are isomorphic, but Set α, defined as α→ Prop, supports many useful
operations and notations, such as ∅, ∪, ∩, ∈, and {. . . | . . .} (Section 7.7).

Our semantics is called denote, with J K as syntactic sugar. We start with the
first four equations of the definition, keeping while for later:

def denote : Stmt → Set (State × State)
| Stmt.skip => Id
| Stmt.assign x a =>

{st | Prod.snd st = (Prod.fst st)[x 7→ a (Prod.fst st)]}
| Stmt.seq S T => denote S # denote T
| Stmt.ifThenElse B S T =>

(denote S ⇃ B) ∪ (denote T ⇃ (fun s 7→ ¬ B s))

The skip statement is interpreted as the identity relation over states—i.e., the
set of all tuples of the form (s, s). This captures the desired semantics of skip:
The poststate is always identical to the prestate.

The semantics of assignment is the set of tuples where the second component
reflects the result of the assignment.

The semantics of sequential composition is elegantly expressed as a relational
composition #, which is defined by the equation

r1 # r2 = {ac | ∃b, (Prod.fst ac, b) ∈ r1 ∧ (b, Prod.snd ac) ∈ r2}
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The definition is perhaps easier to relate to when expressed as

r1 # r2 = {(a, c) | ∃b, (a, b) ∈ r1 ∧ (b, c) ∈ r2}

Unfortunately, Lean cannot process that form, since it requires the left part of a
comprehension to be a single variable.

The semantics of an if–then–else statement is given as the union of the se-
mantics of the two branches, restricted to include only the tuples whose first com-
ponent makes the Boolean condition true or false, depending on the branch. The
restriction operator is defined by

r ⇃ P = {ab | ab ∈ r ∧ P (Prod.fst ab)}

A more intuitive definition would have been

r ⇃ P = {(a, b) | (a, b) ∈ r ∧ P a}

but again this is not supported by Lean. Note two degenerate cases: If P := (fun
_ 7→ True), then r ⇃ P = r, and if P := (fun _ 7→ False), then r ⇃ P = ∅.

The difficulties arise when we try to define the semantics of while loops. We
would like to write

| Stmt.whileDo B S =>
((denote S # denote (Stmt.whileDo B S)) ⇃ B)
∪ (Id ⇃ (fun s 7→ ¬ B s))

but this is ill-founded due to the recursive call on Stmt.whileDo B S. We need
something else. What we are looking for on the right-hand side is some term X
that satisfies the equation

X = ((denote S # X) ⇃ B) ∪ (Id ⇃ (fun s 7→ ¬ B s))

We are looking for what mathematicians call a fixpoint. The next four sections are
concerned with building an operator lfp that computes the fixpoint for a given
equation. Using lfp, we will be able to define the semantics of while loops by

| Stmt.whileDo B S =>
lfp (fun X 7→ ((denote S # X) ⇃ B)
∪ (Id ⇃ (fun s 7→ ¬ B s)))

11.3 Fixpoints

A fixpoint (or fixed point) of f is a solution for X in the equation

X = f X

In general, fixpoints may not exist at all for some f; for example, if f := Nat.succ,
then there exists no value X such that X = Nat.succ X. There may also be several
fixpoints; for example, if f := (fun x 7→ x)), then any X is a solution of X = (fun
x 7→ x) X = X. Under some conditions on f, a unique least fixpoint and a unique
greatest fixpoint are guaranteed to exist.
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Consider the following fixpoint equation, where X : N→ Prop:

X = (fun n : N 7→ n = 0 ∨ (∃m : N, n = m + 2 ∧ X m))

This equation is the β-reduced variant of an equation with the right format:

X =

f︷ ︸︸ ︷
(fun (P : N→ Prop) (n : N) 7→ n = 0 ∨ (∃m : N, n = m + 2 ∧ P m)) X

A solution is X := Even, the predicate that characterizes the even natural numbers.
Recall that we proved the inversion rule

Even n↔ n = 0 ∨ (∃m : N, n = m + 2 ∧ Even m)

in Section 6.5. It turns out that Even is the only fixpoint. In general, the least and
greatest fixpoint may be different. Consider the equation

X = (fun P 7→ P) X

for X : N→ Prop. The least fixpoint is fun _ 7→ False and the greatest fixpoint is
fun _ 7→ True. By convention, we have False < True and thus (fun _ 7→ False) <
(fun _ 7→ True). Similarly, ∅ < @Set.univ α for any inhabited type α.

For the semantics of while loops, X will have type Set (State × State) of
relations between states, and fwill correspond to either taking one extra iteration
of the loop (if the condition B is true) or the identity (if B is false).

Which fixpoint should we use for the semantics of while? Whereas the great-
est fixpoint would also allow cyclic and diverging executions, the least fixpoint
allows only finite (but possibly unbounded) executions. Hence we choose the
least fixpoint.

11.4 Monotone Functions

We claimed above that the least and greatest fixpoints are guaranteed to exist
under some conditions on f. It is time to make this more precise. Let α and β be
arbitrary types, each equipped with a partial order ≤. The function f : α→ β is
monotone if a ≤ b→ f a ≤ f b for all a, b. The function f : Set α→ Set α admits
least and greatest fixpoints if f is monotone.

Many operations on sets (e.g., union ∪), relations (e.g., composition #), and
functions (e.g., the identity function fun x 7→ x, the constant function fun _ 7→ k,
composition ◦) are monotone or preserve monotonicity. Of course, not all func-
tions are monotone. Here is an example of a nonmonotone function f on Set α,
with ⊆ as the partial order:

f A = (if A = ∅ then Set.univ else ∅)

If α is inhabited, we have ∅ ⊆ Set.univ but f ∅ = Set.univ ⊈ ∅ = f Set.univ.

11.5 Complete Lattices

To define lfp for sets (including relations), we need two operations: subset ⊆ :
Set α→ Set α→ Prop and big intersection

⋂
: Set (Set α)→ Set α, which can

be defined as ⋂
X = {a | ∀A, A ∈ X→ a ∈ A}

If X is a finite set {A1, . . ., An}, then
⋂

X = A1 ∩ · · · ∩ An.
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We can define lfp more generally so that it works not only with sets but with
any instance of the algebraic structure called a complete lattice. A complete lattice
α is an ordered type for which each Set α has an infimum, also called greatest
lower bound. A complete lattice consists of

1. a partial order ≤ : α→ α→ Prop (i.e., a reflexive, antisymmetric, and tran-
sitive binary predicate);

2. an operator
d

: Set α→ α, called the infimum.

The
d

operator satisfies the following two conditions:

1.
d

A is a lower bound of A:
d

A ≤ b for all b ∈ A;

2.
d

A is a greatest lower bound: b ≤
d

A for all b such that ∀a, a ∈ A→ b ≤ a.

Together, conditions 1 and 2 ensure that
d

A is the unique greatest lower bound.
The lattice operators ≤ and

d
generalize ⊆ : Set α→ Set α→ Prop and

⋂
:

Set (Set α)→ Set α. Be aware that
d

A need not be in A. For example, an open
interval ]a, b[ overR has infimum a /∈ ]a, b[. The infimum of a set is a generalization
of the notion of minimal element.

Here are some examples of complete lattices:

Set α with respect to ⊆ and
⋂

for all types α;

Prop with respect to→ and fun A 7→ ∀a ∈ A, a;

ENat := N ∪ {∞} with respect to ≤ and a suitable infimum operator;

EReal := R ∪ {-∞,∞} with respect to ≤ and a suitable infimum operator.

If α is a complete lattice, then β→ α is also a complete lattice. If α and β are
complete lattices, then α × β is also a complete lattice. In both cases, ≤ and

d

are defined componentwise.
Here are some nonexamples of complete lattices: N, Z, Q, and R with respect

to ≤. The issue is that there is no greatest element to assign to
d
∅. Another

nonexample is ERat := Q ∪{-∞,∞} , because
d

{q | 2 < q * q} = sqrt 2 is not
in ERat.

In Lean, it is natural to represent complete lattices using type classes:

class CompleteLattice (α : Type)
extends PartialOrder α : Type where
Inf : Set α → α

Inf_le : ∀A b, b ∈ A → Inf A ≤ b
le_Inf : ∀A b, (∀a, a ∈ A → b ≤ a) → b ≤ Inf A

The type Set α is an instance of the type class:

instance Set.CompleteLattice {α : Type} :
CompleteLattice (Set α) :=
{ @Set.PartialOrder α with

Inf := fun X 7→ {a | ∀A, A ∈ X → a ∈ A}
Inf_le := by aesop
le_Inf := by aesop }
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11.6 Least Fixpoint

Using complete lattices, we can define the least fixpoint operator:

lfp f =
d

{x | f x ≤ x}

In Lean:

def lfp {α : Type} [CompleteLattice α] (f : α → α) : α :=
CompleteLattice.Inf {a | f a ≤ a}

The Knaster–Tarski theorem,1 which we briefly mentioned in Section 6.1, gives
us the following properties for any monotone function f on a complete lattice:

lfp f is a fixpoint: lfp f = f (lfp f);
lfp f is smaller than any other fixpoint: X = f X→ lfp f ≤ X.

11.7 A Relational Denotational Semantics, Continued

With lfp, we can fulfill our promise and complete the definition of the denota-
tional semantics of WHILE programs:

| Stmt.whileDo B S =>
lfp (fun X 7→ ((denote S # X) ⇃ B)
∪ (Id ⇃ (fun s 7→ ¬ B s)))

To validate our definition, we can prove the following connection between the
denotational and the big-step semantics:

theorem denote_Iff_BigStep (S : Stmt) (s t : State) :
(s, t) ∈ JSK ↔ (S, s) ⇒■⇒ t

For the proof, we refer to Chapter 11 of Concrete Semantics: With Isabelle/HOL [23]
or to the demonstration file accompanying this chapter.

11.8 Application to Program Equivalence

Based on the denotational semantics, we introduce a notion of program equiva-
lence. Two programs are equivalent if they have the same semantics:

def DenoteEquiv (S1 S2 : Stmt) : Prop :=
JS1K = JS2K

We write S1 ~ S2 as an abbreviation for DenoteEquiv S1 S2. It is easy to see that ~
is an equivalence relation.

Program equivalence can be used to replace a subprogram in a larger program
with another subprogram if they have the same semantics. This is achieved by the
following congruence rules:

theorem DenoteEquiv.seq_congr {S1 S2 T1 T2 : Stmt}
(hS : S1 ~ S2) (hT : T1 ~ T2) :

S1; T1 ~ S2; T2 :=
by

1https://en.wikipedia.org/wiki/Knaster-Tarski_theorem

https://en.wikipedia.org/wiki/Knaster-Tarski_theorem
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simp [DenoteEquiv, denote] at *
simp [*]

theorem DenoteEquiv.if_congr {B} {S1 S2 T1 T2 : Stmt}
(hS : S1 ~ S2) (hT : T1 ~ T2) :

Stmt.ifThenElse B S1 T1 ~ Stmt.ifThenElse B S2 T2 :=
by

simp [DenoteEquiv, denote] at *
simp [*]

theorem DenoteEquiv.while_congr {B} {S1 S2 : Stmt}
(hS : S1 ~ S2) :

Stmt.whileDo B S1 ~ Stmt.whileDo B S2 :=
by

simp [DenoteEquiv, denote] at *
simp [*]

A congruence rule is a theorem that lifts an equivalence relation over some con-
text (here, ~ over sequential composition, if–then–else, and while).

Notice how the denotational semantics leads to short proofs by rewriting. This
should not be surprising, given that it is designed to be equational and composi-
tional. If we had used the big-step semantics as the basis for program equivalence
instead, these proofs would have been much more complicated.

We can now prove simple programs equivalent by equational reasoning:

theorem DenoteEquiv.skip_assign_id {x} :
Stmt.assign x (fun s 7→ s x) ~ Stmt.skip :=
by simp [DenoteEquiv, denote, Id]

theorem DenoteEquiv.seq_skip_left {S} :
Stmt.skip; S ~ S :=
by simp [DenoteEquiv, denote, Id, comp]

theorem DenoteEquiv.seq_skip_right {S} :
S; Stmt.skip ~ S :=
by simp [DenoteEquiv, denote, Id, comp]

We defined the semantics of while using the lfp operator, but who knows
whether monotonicity—which guarantees the existence of a least fixpoint—is met?
To quell such doubts, we prove the following theorem:

theorem DenoteEquiv.if_seq_while {B S} :
Stmt.ifThenElse B (S; Stmt.whileDo B S) Stmt.skip
~ Stmt.whileDo B S :=
by

simp [DenoteEquiv, denote]
apply Eq.symm
apply lfp_eq
apply Monotone_while_lfp_arg

The theorem gives us a convenient way to expand or contract one iteration of a
loop. The second apply invokes the theorem lfp_eq : lfp f = f (lfp f), stating



156 Chapter 11. Denotational Semantics

that lfp is a fixpoint. The last step applies a theorem to convince Lean that lfp’s
argument is monotone. That theorem’s proof is fairly monotonous:

theorem Monotone_while_lfp_arg (S B) :
Monotone (fun X 7→ JSK # X ⇃ B ∪ Id ⇃ (fun s 7→ ¬ B s)) :=
by

apply Monotone_union
{ apply SorryTheorems.Monotone_restrict

apply SorryTheorems.Monotone_comp
{ exact Monotone_const _ }
{ exact Monotone_id } }

{ apply SorryTheorems.Monotone_restrict
exact Monotone_const _ }

11.9 A Simpler Approach Based on an Inductive Predicate

Lean’s inductive predicates correspond to least fixpoints, but they are built into
Lean’s logic (the calculus of inductive constructions), without using a fixpoint op-
erator like lfp. Most of this section was dedicated to the construction of an lfp
operator. Could we have used an inductive predicate instead and saved ourselves
this work?

The answer is yes. First, recall that the types Set (State × State) and State
→ State→ Prop are equivalent representations of binary relations in Lean. So we
can build the following Awhile predicate, which resembles the reflexive transitive
closure but stops when the given condition B turns false:

inductive Awhile (B : State → Prop)
(r : Set (State × State)) :

State → State → Prop
| true {s t u} (hcond : B s) (hbody : (s, t) ∈ r)

(hrest : Awhile B r t u) :
Awhile B r s u

| false {s} (hcond : ¬ B s) :
Awhile B r s s

With this operator, the definition of the definitional semantics becomes

def denoteAwhile : Stmt → Set (State × State)
...

| Stmt.whileDo b S =>
{st | Awhile b (denoteAwhile S) (Prod.fst st)

(Prod.snd st)}

The Awhile predicate’s introduction rules closely resembles the while rules
of the big-step operational semantics. Behind their different façades, operational
and denotational semantics are not so dissimilar after all.
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Chapter 12

Logical Foundations of
Mathematics

In this chapter, we dive deeper into the logical foundations of Lean. Most of the
features described here are especially relevant for defining mathematical objects
and proving theorems about them. For even more details, we refer to Carneiro’s
MSc thesis [5].

12.1 Universes

In dependent type theory, not only all terms have a type, but also all types have
types themselves. We have already seen some occurrences of this principle. The
PAT principle tells us to view proofs as terms and propositions as types. For ex-
ample, the theorem

@And.intro : ∀a b, a→ b→ a ∧ b

is really a term @And.intro of type ∀a b, a→ b→ a ∧ b, which in turn has a type:

∀a b, a→ b→ a ∧ b : Prop

What is the type of Prop then? Prop has the same type as virtually all other types
we have constructed so far:

Prop : Type

What is the type of Type? The simplest solution would be to let Type : Type, but
this choice leads to Girard’s paradox, the type theory equivalent of Russel’s para-
dox. To avoid inconsistencies, we need a fresh type to contain Type, which we call
Type 1. Type 1 itself has type Type 2, and so on:

Type : Type 1
Type 1 : Type 2
Type 2 : Type 3

...

In fact, Type with no argument is an abbreviation for Type 0. If we want to
incorporate Prop in this hierarchy, we can use the syntax Sort u, where Sort 0 is

159
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an alias for Prop and Sort (u + 1) is an alias for Type u. The hierarchy is captured
by the following typing judgment:

Sort
C ⊢⊢⊢ Sort u : Sort (u + 1)

All of these types containing other types are called universes, and the u in the
expression Sort u is a universe level. Although universe levels look like terms of
type N, they are in fact not even terms.

Instead of using Type everywhere, you can make your theorems slightly more
general without having to think about universe levels by writing Type _. Lean then
creates a fresh universe variable. This helps maintain the illusion that we work in a
convenient logic where Type : Type holds, but without introducing any paradoxes.
In practice, Type 0 is large enough for most of computer science and mathematics.

12.2 The Peculiarities of Prop

Although Prop may seem to fit nicely into the universe hierarchy, it differs from
the other universes in several respects.

12.2.1 Impredicativity

When constructing a new type from other types (e.g., α→ β from α : Type u and
β : Type v), the newly constructed type is more complex than each of its com-
ponents, and it is natural to put it into the largest universe involved (e.g., α→
β : Type (max u v)). This is exactly what Lean does. The following typing rule ex-
presses this idea generally for dependent types:

C ⊢⊢⊢ σ : Type u C, x : σ ⊢⊢⊢ τ[x] : Type v
Arrow-Type

C ⊢⊢⊢ (x : σ)→ τ[x] : Type (max u v)

This behavior of the Type universes is called predicativity. In general, predicativity
means that an object must not be defined in terms of a quantifier ranging over
that same object.

However, it is convenient to have Prop behave differently. We would like the
expression ∀a : Prop, a→ a to be of type Prop—it is, after all, a proposition. Un-
folding the syntactic sugar for ∀, this expression is the same as (a : Prop)→ a
→ a. If we had Type u instead of Prop, the above typing rule would yield

(a : Type u)→ a→ a : Type (u + 1)

because Type u : Type (u + 1) and max (u + 1) (max u u) = u + 1. Thus, the uni-
verse level is increased by one when typing this expression. To force expressions
such as ∀a : Prop, a→ a to be of type Prop anyway, we need a special typing rule
for ∀ expressions with a Prop body:

C ⊢⊢⊢ σ : Sort u C, x : σ ⊢⊢⊢ τ[x] : Prop
Arrow-Prop

C ⊢⊢⊢ (∀x : σ, τ[x]) : Prop

The rule yields
∀a : Prop, a→ a : Prop
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as desired. The two typing rules above can be summarized as the single rule

C ⊢⊢⊢ σ : Sort u C, x : σ ⊢⊢⊢ τ[x] : Sort v Arrow
C ⊢⊢⊢ (x : σ)→ τ[x] : Sort (imax u v)

where imax u 0 = 0 and imax u (v + 1) = max u (v + 1). This behavior is called im-
predicativity of Prop. In general, impredicativity means that an object may be
defined via a quantifier ranging over itself.

12.2.2 Proof Irrelevance

A second difference between Prop and Type is proof irrelevance. It means that any
two proofs of the same proposition a are equal:

theorem proof_irrel {a : Prop} (h1 h2 : a) :
h1 = h2 :=
by rfl

In Lean, this equality is a syntactic equality up to computation, allowing us to use
the rfl tactic. When viewing a proposition as a type and a proof as an element of
that type, proof irrelevance means that a proposition is either an empty type or
has exactly one inhabitant. If it is empty, it is false. If it has exactly one inhabitant,
it is true. Proof irrelevance is very helpful when reasoning about dependent types.

In Section 6.3, we saw a diagram depicting the interpretation of Bool and Prop
side by side. The diagram did not take proof irrelevance into account and showed
multiple proofs for the same proposition. We now know this is not accurate. Here
is a revised diagram:

Bool: · · Prop: ·
If we mentally connect Bool’s two elements (false and true) with Prop’s two

types (False and True), we see that Prop is nearly the same as Bool, except that
propositions of type Prop can store proofs, in accordance with the PAT principle.
The following table summarizes the situation:

: False : Prop
True.intro : True : Prop
false : Bool : Type
true : Bool : Type

To make proof irrelevance work, Lean must give up the “no confusion” property
for inductive predicates. Indeed, various proofs of the same proposition should
definitely be “confused.” This only concerns inductive predicates (e.g., Even), not
inductive types in general (e.g., List α).

Other systems and logics make different choices. For example, Coq is proof-
relevant by default but compatible with proof irrelevance. Homotopy type theory
and other constructive or intuitionistic type theories build on data in equality
proofs and are therefore incompatible with proof irrelevance.
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12.2.3 No Large Elimination

A further difference between Prop and Type is that Prop does not allow large elim-
ination: It is generally impossible to extract information from a proof of a propo-
sition and use it in a program (i.e., a value of a type belonging to Type). After all,
because of proof irrelevance, all proofs of a given proposition are equal, so they
cannot carry specific information that would distinguish them.

Imagine we could extract information from proofs inside a program. We could
for instance use the match construct in function definitions such as the following:

-- fails
def unsquare (i : Z) (hsq : ∃j, i = j * j) : Z :=

match hsq with
| Exists.intro j _ => j

The unsquare function takes a square number i and a proof hsq that i is actually
a square number and returns the number j before squaring, extracted from the
proof. Lean raises the error

tactic ’induction’ failed, recursor ’Exists.casesOn’ can
only eliminate into Prop

If it accepted the definition, we could derive False as follows. Let

hsq1 := Exists.intro 3 (by linarith)
hsq2 := Exists.intro (-3) (by linarith)

be two proofs of ∃j, (9 : Z) = j * j. Notice that they use different witnesses for j
(3 versus -3). We then have unsquare 9 hsq1 = 3 and unsquare 9 hsq2 = -3. Yet, by
proof irrelevance, hsq1 = hsq2. Hence, unsquare 9 hsq2 equals 3. But we already
determined that it equals -3. This means 3 = -3, a contradiction.

An unfortunate consequence of the absence of large elimination is that we
cannot perform rule induction by pattern matching and recursion. This kind of
induction relies on a “measure”—a function to N that assigns a size to the argu-
ments. Without large elimination, the measure cannot be defined meaningfully.
This explains why we always use the induction tactic for rule induction.

As a compromise, Lean allows small elimination, which eliminates only into
Prop—whereas large elimination can eliminate into an arbitrary large universe
Type u. This means we can use match to analyze the structure of a proof, extract
existential witnesses, and so on, as long as the match expression itself is in a proof.
We have seen several examples of this in Section 6.5.

As a further compromise, Lean allows large elimination for syntactic subsin-
gletons: types in Prop that can be proved in at most one way. For example, False
has no proof, and all proofs of a ∧ b have the form And.intro _ _. (Recursively,
there might be multiple ways to prove a and b.) More precisely, a syntactic subs-
ingleton is an inductive definition with at most one constructor whose arguments
are either Prop or appear as immediate arguments in the result type. When we
match h : a ∧ b against the pattern And.intro ha hb, no information about h is
leaked.
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12.3 The Axiom of Choice

Lean’s logic includes the axiom of choice, which makes it possible to obtain an
arbitrary element of any nonempty type. Consider the following predicate:

inductive Nonempty (α : Sort u) : Prop
| intro (val : α) : Nonempty α

The predicate states that α has at least one element. To prove Nonempty α, we
must provide an α value to Nonempty.intro:

theorem Nat.Nonempty :
Nonempty N :=
Nonempty.intro 0

Since Nonempty lives in Prop, large elimination is not available, and thus we cannot
extract the element that was used in the proof of Nonempty α.

In Lean, the axiom of choice takes the form of a function that returns an arbi-
trary α value given a proof of Nonempty α:

Classical.choice {α : Sort u} : Nonempty α→ α

We have no way to know whether the returned element is the same element that
was used to prove Nonempty α. It will just be an arbitrary element of α.

The constant Classical.choice is noncomputable. If we ask Lean for its value
using #reduce or #eval, it will refuse to compute it. In other words, proofs may
be terms, but they are not necessarily programs. This is one of the reasons why
some logicians prefer to work without the axiom of choice. By contrast, the vast
majority of mathematicians have no objections against the axiom.

Unlike proof irrelevance and large and small elimination, the axiom of choice is
not built into the Lean kernel; it is only an axiom in the core library, and we are free
to work without it. Lean requires us to mark definitions with the noncomputable
keyword if they use Classical.choice to define constants in Type.

The following tools rely on Classical.choice:

The function Classical.choose, often called Hilbert’s choice operator, can
help us find a witness of ∃a : α, p a if we do not care which one. Its com-
panion Classical.choose_spec gives a proof that the witness is indeed a
witness.

Classical.choose : (∃a : α, p a)→ α

Classical.choose_spec : ∀h : (∃a : α, p a), p (Classical.choose h)

Intuitively, the choice operator tells us, “Convince me that there exists an
element satisfying p, and I will give you such an element.”
We can also derive the traditional axiom of choice:

Classical.axiomOfChoice (α β : Type) {R : α→ β→ Prop} :
(∀x : α, ∃y : β, R x y)→ (∃f, ∀x, R x (f x))

From the axiom of choice and propositional and functional extensionality
(propext, funext), we can derive the law of excluded middle:

Classical.em : ∀a : Prop, a ∨ ¬ a
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With the law of excluded middle, every proposition is decidable. This means
that we can construct proofs based on a case distinction on whether a cer-
tain proposition is true. We introduced this technique in Chapters 5 and 6.

12.4 Subtypes

Inductive types are a very convenient definitional mechanism when they are appli-
cable, but lots of mathematical constructions do not fit that mold. Lean provides
two alternatives to cater for these: subtypes and quotients.

Subtyping is a mechanism to create new types from existing ones. Given a
predicate on the elements of a base type, the subtype contains only those ele-
ments of the base type that satisfy the predicate. More precisely, the subtype
contains element–proof pairs that combine an element of the base type and a
proof that the predicate is true for that element.

The following diagram depicts a subtype that was created by keeping two of
the base type’s five elements:

· ·
·· · · ·

·· ·
base type subtype

Subtyping is useful for those types that cannot be defined as an inductive type.
For example, any attempt at defining the type of finite sets along the lines of

inductive Finset (α : Type) : Type
| empty : Finset α

| insert : α → Finset α → Finset α

is doomed, because a given set may have multiple representations. For example,
{1, 2} can be represented in any of the following ways, and more:

Finset.insert 1 (Finset.insert 2 Finset.empty)
Finset.insert 2 (Finset.insert 1 Finset.empty)

Finset.insert 1 (Finset.insert 1 (Finset.insert 2 Finset.empty))

Instead, we can define finite sets as the subtype of (possibly infinite) sets that
are finite. In general, subtypes have the syntax

{variable : base-type // property-applied-to-variable}

We saw an example in Section 4.6, namely, {i : N // i ≤ n}, which consists of the
natural numbers i fulfilling i ≤ n, where n is fixed in the context. The base type is
N, and the property is fun i 7→ i ≤ n. A less suggestive but perhaps less confusing
syntax for the same type is @Subtype N (fun i 7→ i ≤ n). Our motivating example,
the type of finite sets over some type α, is specified as {A : Set α // Set.Finite
A}, where Set.Finite is True if and only if its argument is finite.
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12.4.1 First Example: Full Binary Trees

To illustrate subtypes, we will define a type of full binary trees building on the
BTree type from Section 5.8. In Section 6.6.3, we introduced a predicate IsFull
that is true if each node of a tree has either zero or two child nodes. Based on this
type and this predicate, we can construct a subtype FullBTree, containing only
full binary trees, as follows:

def FullBTree (α : Type) : Type :=
{t : BTree α // IsFull t}

This is syntactic sugar for

def FullBTree (α : Type) : Type :=
@Subtype (BTree α) IsFull

where Subtype is defined as follows:

inductive Subtype {α : Type} (p : α → Prop) : Type
| mk : (x : α) → p x → Subtype p

Elements of FullBTree are essentially dependently typed pairs, where the first
component is a tree t and the second component is a proof that t is full:

def emptyFullBTree : FullBTree N :=
Subtype.mk BTree.empty IsFull.empty

def fullBTree6 : FullBTree N :=
Subtype.mk (BTree.node 6 BTree.empty BTree.empty)

(by
apply IsFull.node
apply IsFull.empty
apply IsFull.empty
rfl)

Given a value of type FullBTree, we can retrieve its two components via Subtype.
val and Subtype.property:

#reduce Subtype.val fullBTree6
#check Subtype.property fullBTree6

The most appealing aspect of subtypes is that we can lift the operations from
the base type to the subtype instead of having to build a library from scratch, as
long as they preserve the subtype property. We only need to define “wrappers”
around constants from the base type. In general, defining such a wrapper around
an operation f on the base type involves three steps:

1. extract the base type values from the wrapper arguments;
2. invoke f on those base type values;
3. encapsulate the result using Subtype.mk, together with a proof that the re-

sulting base type value fulfills the subtype property.
Using this procedure, we can lift BTree functions to FullBTree functions if they

preserve the property IsFull. For example, to lift the mirror operation from the
type BTree→ BTree to the type FullBTree→ FullBTree, we must

1. extract the BTree from the wrapper argument;
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2. invoke mirror on that BTree;
3. encapsulate the result using Subtype.mk, together with a proof that the re-

sulting BTree fulfills IsFull.
For step 3, we must extract the proof of IsFull from the argument and use the
theorem IsFull_mirror proved in Section 6.6.3. Putting everything together, we
get

def FullBTree.mirror {α : Type} (t : FullBTree α) :
FullBTree α :=
Subtype.mk (LoVe.mirror (Subtype.val t))

(by
apply IsFull_mirror
apply Subtype.property t)

The input is an element t of the subtype FullBTree. We decompose t into
Subtype.val t : BTree and Subtype.property t : IsFull t. We use the earlier
mirror function to reverse the tree component of t and use the theorem IsFull_
mirror, together with the property component of t, to show the condition IsFull
(mirror (Subtype.val t)).

Finally, we build a pair containing the resulting tree and the proof that this tree
is full using Subtype.mk. The Subtype.mk constructor can be seen both as a pair-
like constructor and as a cast from BTree to FullBTree, with a second argument
that guarantees that the cast is safe.

For proofs about subtypes, the following theorem is useful:

Subtype.eq : Subtype.val ?a = Subtype.val ?b→ ?a = ?b

It states that two subtype values are equal if their Subtype.val components are
equal. It is crucial that proofs are irrelevant in Lean, because we would not want
to have spurious duplicate values in the subtype, differing only in their proofs.
Here is how Subtype.eq can be used to prove that the mirror image of the mirror
image of a FullBTree is the FullBTree itself:

theorem FullBTree.mirror_mirror {α : Type} (t : FullBTree α) :
(FullBTree.mirror (FullBTree.mirror t)) = t :=
by

apply Subtype.eq
simp [FullBTree.mirror, LoVe.mirror_mirror]

Applying the theorem Subtype.eq and unfolding the definition of full_BTree.
mirror yields the subgoal

mirror (mirror (Subtype.val t)) = Subtype.val t

which matches the statement of the theorem mirror_mirror from Section 5.8.

12.4.2 Second Example: Vectors

As a second example, consider the following definition of vectors:

def Vector (α : Type) (n : N) : Type :=
{xs : List α // List.length xs = n}
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A vector is defined as a list of a given length. With lists, there is only one type for
a list of all lengths. For vectors, we have one dedicated type for every length of
a vector. The advantage of this scheme is that some operations, such as addition
and scalar product of vectors, require that two involved vectors have the same
length. We saw a less practical definition of vectors in Section 5.10.

Vectors can be built from lists using Subtype.mk:

def vector123 : Vector Z 3 :=
Subtype.mk [1, 2, 3] (by rfl)

Basic operations on vectors can be defined by decomposing them with Subtype.
val and Subtype.property, manipulating the underlying lists, and then recom-
posing them with Subtype.mk. For example, we can define the componentwise
negation of an integer vector as follows:

def Vector.neg {n : N} (v : Vector Z n) : Vector Z n :=
Subtype.mk (List.map Int.neg (Subtype.val v))

(by
rw [List.length_map]
exact Subtype.property v)

We use the function List.map to negate every entry of the underlying list and the
theorem List.length_map to show that this operation does not change the list’s
length.

Using Subtype.eq, we can prove the following theorem about Vector.neg:

theorem Vector.neg_neg (n : N) (v : Vector Z n) :
Vector.neg (Vector.neg v) = v :=
by

apply Subtype.eq
simp [Vector.neg]

The application of Subtype.eq reduces the goal to showing the corresponding
property on the underlying lists. We can then use simp to finish the proof.

12.5 Quotient Types

Quotients are a powerful construction in mathematics used to define Z, R, and
many other sets. Lean supports quotient types, an analogous mechanism on types.
Like subtyping, quotienting constructs a new type from an existing type. Unlike
a subtype, a quotient type contains all of the elements of the base type, except
that some elements that are different in the base type may be considered equal
in the quotient type. In mathematical terms, the quotient type is isomorphic to a
partition of the base type. The diagram below shows a quotient type built from a
three-way partition:

· ·
·· · · ·

·· · · ·
·· ·

base type subtype quotient type
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The depicted quotient type has only three elements, represented by gray ellipses.
Each of these elements corresponds to one or more base type elements.

The prerequisites to construct a quotient type are a base type τ and an equiv-
alence relation R : τ→ τ→ Prop specifying which elements of the base type will
be considered equal in the quotient. To construct the quotient type, we first need
to prove that R is an equivalence relation on τ. A type τ equipped with an equiv-
alence relation is called a setoid. In Lean, Setoid is a type class. We can declare
an instance using the command

instance τ.Setoid : Setoid τ :=
{ r := R

iseqv :=
{ refl := . . .

symm := . . .
trans := . . . } }

where the ellipses stand for missing proofs of the respective properties. In ad-
dition, this instance declaration introduces the notation a ≈ b for R a b. More im-
portantly, we can now use the quotient type Quotient τ.Setoid.

Every element a : τ belongs to some element in Quotient τ.Setoid, given by
Quotient.mk τ.Setoid a, with

Quotient.mk {α : Type}→ (s : Setoid α)→ α→ Quotient s

The expression Quotient.mk τ.Setoid a is quite a mouthful. Fortunately, Lean
lets us abbreviate it to to JaK.

The following axiom guarantees that pairs of elements for which R holds are
indeed equal in the quotient type:

Quotient.sound {a b : τ} : a ≈ b→ JaK = JbK

A theorem states the converse:

Quotient.exact {a b : τ} : JaK = JbK→ a ≈ b

Finally, we can lift functions of type τ→ υ, where υ is some arbitrary type, to
Quotient τ.Setoid→ υ using Quotient.lift, which satisfies the following syn-
tactic equality up to computation. Given some f : τ→ υ such that h : ∀a b, a ≈
b→ f a = f b, we have

Quotient.lift f h JaK = f a

for all a : τ. The argument h is a proof that f is compatible with ≈; in other words,
it does not distinguish between ≈-equivalent arguments.

12.5.1 First Example: Integers

As an example of a quotient type, we will construct the integers. A convenient
approach is to construct a quotient over pairs of natural numbers. The idea is
that a pair (p, n) of natural numbers represents the integer p - n. In this way, we
can represent all nonnegative integers p by (p, 0) and all negative integers - n by
(0, n). We also get many more representations of the same integers; for example,
(7, 0), (8, 1), (9, 2), and (10, 3) all represent the integer 7.
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First, we need to register the equivalence relation that we want to use. We
want two pairs (p1, n1) and (p2, n2) to be equal when p1 - n1 and p2 - n2 yield
the same integer. However, the condition p1 - n1 = p2 - n2 does not work because
subtraction on N is ill-behaved (e.g., 0 - 1 = 0). Instead, we use the condition
p1 + n2 = p2 + n1, which relies on addition.

We provide the definition of our equivalence relation, followed by a proof that
it is reflexive, symmetric, and transitive:

instance Int.Setoid : Setoid (N × N) :=
{ r :=

fun pn1 pn2 : N × N 7→
Prod.fst pn1 + Prod.snd pn2 =
Prod.fst pn2 + Prod.snd pn1

iseqv :=
{ refl :=

by
intro pn
rfl

symm :=
by

intro pn1 pn2 h
rw [h]

trans :=
by

intro pn1 pn2 pn3 h12 h23
linarith } }

We can now write ≈ for the equivalence relation:

theorem Int.Setoid_Iff (pn1 pn2 : N × N) :
pn1 ≈ pn2 ↔
Prod.fst pn1 + Prod.snd pn2 = Prod.fst pn2 + Prod.snd pn1 :=
by rfl

Using the name int.rel of our Setoid instance that we registered above, we
can then define the integers as

def Int : Type :=
Quotient Int.Setoid

We can define the integer zero as

def Int.zero : Int :=
J(0, 0)K

In fact, any term of the form J(m, m)K represents zero:

theorem Int.zero_Eq (m : N) :
Int.zero = J(m, m)K :=
by

rw [Int.zero]
apply Quotient.sound
rw [Int.Setoid_Iff]
simp
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Next, we define addition on our new integers. To define functions on a quo-
tient type, we cannot simply define them by pattern matching, as for inductive
types. Instead, we define the function on the base type first and then lift the def-
inition to the quotient. To achieve this, we must prove that the definition of the
function f does not depend on the chosen representative of an equivalence class
(i.e., a ≈ b→ f a = f b). The functions Quotient.lift (for unary functions) and
Quotient.lift2 (for binary functions) can be used to lift functions in this way.

Addition can be defined as adding the pairs of natural numbers component-
wise. We then need to provide a proof that this can be lifted to a function on the
quotient by showing that pn1 ≈ pn1’ and pn2 ≈ pn2’ imply

J(prod.fst pn1 + prod.fst pn2 , prod.snd pn1 + prod.snd pn2 ))K
= J(prod.fst pn1’ + prod.fst pn2’, prod.snd pn1’ + prod.snd pn2’)K

Formally:

def Int.add : Int → Int → Int :=
Quotient.lift2

(fun pn1 pn2 : N × N 7→
J(Prod.fst pn1 + Prod.fst pn2,

Prod.snd pn1 + Prod.snd pn2)K)
(by

intro pn1 pn2 pn1’ pn2’ h1 h2
apply Quotient.sound
rw [Int.Setoid_Iff] at *
linarith)

The resulting function Int.add has the intended behavior:

theorem Int.add_Eq (p1 n1 p2 n2 : N) :
Int.add J(p1, n1)K J(p2, n2)K = J(p1 + p2, n1 + n2)K :=
by rfl

It would be very convenient if Lean let us enter this theorem as the definition
of Int.add in the first place, presumably with the following syntax:

-- fails
def Int.add : Int → Int → Int

| J(p1, n1)K, J(p2, n2)K => J(p1 + p2, n1 + n2)K

This would be a nice and intuitive syntax, but without a proof that the definition is
compatible with≈, we could define nonsensical functions and use them to derive
False. For example, we could define

-- fails
def Int.fst : Int → N

| J(p, n)K => p

Notice that Int.fst J(0, 0)K = 0 and Int.fst J(1, 1)K = 1. However, since J(0, 0
)K = J(1, 1)K, we get 0 = 1, a contradiction.

We can use the characteristic theorem Int.add_Eq to prove other theorems
about Int.add, such as

theorem Int.add_zero (i : Int) :
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Int.add Int.zero i = i :=
by

induction i using Quotient.inductionOn with
| h pn =>

cases pn with
| mk p n => simp [Int.zero, Int.add_Eq]

We invoke the induction tactic with Quotient.inductionOn as the induction prin-
ciple to perform a case distinction on i, replacing i by JpnK, where pn is an arbi-
trary value of the base type N × N. Then we perform a case distinction on pn, ob-
taining a pair (p, n). Finally, we simplify the goal, using the definition of Int.zero
and the characteristic equation of Int.add.

12.5.2 Second Example: Unordered Pairs

Unordered pairs are pairs for which no distinction is made between the first and
second components. They are usually written {a, b}. We will introduce the type
UPair α of unordered pairs over α as the quotient of pairs (a, b) with respect to
the relation “contains the same elements as”:

instance UPair.Setoid (α : Type) : Setoid (α × α) :=
{ r :=

fun ab1 ab2 : α × α 7→
({Prod.fst ab1, Prod.snd ab1} : Set α) =
({Prod.fst ab2, Prod.snd ab2} : Set α)

iseqv :=
{ refl := by simp

symm := by aesop
trans := by aesop } }

theorem UPair.Setoid_Iff {α : Type} (ab1 ab2 : α × α) :
ab1 ≈ ab2 ↔
({Prod.fst ab1, Prod.snd ab1} : Set α) =
({Prod.fst ab2, Prod.snd ab2} : Set α) :=
by rfl

def UPair (α : Type) : Type :=
Quotient (UPair.Setoid α)

It is easy to prove that our pairs are really unordered:

theorem UPair.mk_symm {α : Type} (a b : α) :
(J(a, b)K : UPair α) = J(b, a)K :=
by

apply Quotient.sound
rw [UPair.Setoid_Iff]
simp [Set.unordered_pair_comm]

Another representation of unordered pairs is as sets of cardinality 1 or 2. The
following operation converts UPair α values to that representation:

def Set_of_UPair {α : Type} : UPair α → Set α :=
Quotient.lift (fun ab : α × α 7→ {Prod.fst ab, Prod.snd ab})
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(by
intro ab1 ab2 h
rw [UPair.Setoid_Iff] at *
exact h)

12.5.3 Alternative Definitions via Normalization and Subtyping

Each element of a quotient type correspond to a class of≈-equivalent elements of
the base type. If there exists a systematic way to obtain a canonical representative
for each≈-equivalence class, we can use a subtype instead of a quotient, keeping
only the canonical representatives and filtering out the other elements.

Consider the quotient type Int of integers constructed above. We observed
that (7, 0), (8, 1), (9, 2), and (10, 3) all represent the integer 7, but intuitively
(7, 0) seems preferable to the others. We will say that a pair (p, n) is canonical
if p or n is 0:

inductive Int.IsCanonical : N × N → Prop
| nonpos {n : N} : Int.IsCanonical (0, n)
| nonneg {p : N} : Int.IsCanonical (p, 0)

The integers then consist of the canonical pairs of natural numbers:

def Int : Type :=
{pn : N × N // Int.IsCanonical pn}

Clearly, each integer can be represented in one and only one way. Operations on
integers such as addition and multiplication must then provide canonical results.
Fortunately, normalizing pairs of natural numbers is easy:

def Int.normalize : N × N → N × N
| (p, n) => if p ≥ n then (p - n, 0) else (0, n - p)

theorem Int.IsCanonical_normalize (pn : N × N) :
Int.IsCanonical (Int.normalize pn)

For unordered pairs, there is no obvious normal form, except to always put the
smaller element first (or last). This requires a linear order ≤ on α:

def UPair.IsCanonical {α : Type} [LinearOrder α] :
α × α → Prop
| (a, b) => a ≤ b

def UPair (α : Type) [LinearOrder α] : Type :=
{ab : α × α // UPair.IsCanonical ab}

Returning to the Int.IsCanonical predicate, we observe that there are two
proofs that (0, 0) is canonical, using either Int.IsCanonical.nonpos or Int.
IsCanonical.nonneg. This is not an issue because by proof irrelevance these
proofs must be equal.

12.6 Summary of New Lean Constructs

Declaration
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noncomputable prefixes noncomputable declarations

Constants

Classical.choice function that returns an arbitrary element of a nonempty type
Classical.choose function that returns a witness given a proof of an existential
Quotient function that creates a quotient type of a given setoid instance
Quotient.lift function that lifts a unary function to a quotient type
Quotient.lift2 function that lifts a binary function to a quotient type
Setoid type class for a type with an equivalence relation on it
Sort u universe at level u
Subtype.mk function that constructs a subtype value
Subtype.property function that extracts the base value from a subtype value
Subtype.val function that extracts the property from a subtype value

Notations

{x : α // P[x]} subtype of all x in α fulfilling P[x]
≈ equivalence relation on a setoid (used for quotienting)
Prop abbreviation for Sort 0
Type u abbreviation for Sort (u + 1)

Theorems

Classical.axiomOfChoice
traditional axiom of choice

Classical.choose_spec
characteristic property of Classical.choose

Quotient.exact equality on quotient type implies ≈ on base type
Quotient.inductionOn

induction principle on a quotient type value
Quotient.sound ≈ on base type implies equality on quotient type
Subtype.eq equality on base type implies equality of subtype





Chapter 13

Basic Mathematical Structures

In this chapter, we introduce definitions and proofs about basic mathematical
structures such as groups, fields, and linear orders.

13.1 Type Classes over a Single Binary Operator

In mathematics, a group is a set G with a binary operator · : G × G → G fulfilling
the following properties, called group axioms:

associativity: for all a, b, c ∈ G, we have (a · b) · c = a · (b · c);
identity element: there exists an element e ∈ G such that for all a ∈ G, we
have e · a = a;
inverse element: for each a ∈ G, there exists an inverse element denoted
a−1 such that a−1 · a = e.

In Lean, a type class for groups could be defined as follows:

class Group (α : Type) where
mul : α → α → α

one : α

inv : α → α

mul_assoc : ∀a b c, mul (mul a b) c = mul a (mul b c)
one_mul : ∀a, mul one a = a
mul_left_inv : ∀a, mul (inv a) a = one

However, this is not the official definition. Groups are part of a larger hierarchy of
algebraic structures.

Group operations can be written multiplicatively (with operator ∗, identity ele-
ment 1, and inverse element a−1) or additively (with operator +, identity element
0, and inverse element −a). This is why Lean offers two type classes for groups:
the multiplicative Group and the additive AddGroup. They are essentially the same
but use different names for their constants and properties.

Any type that satisfies the group axioms can be registered as a Group or Add-
Group. To illustrate this, we will define the type Int2 of integers modulo 2, also
known as Z/2Z or Z2, and register it as an AddGroup. The type Int2 has two ele-
ments:

inductive Int2 : Type
| zero

175
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| one

Addition is defined as follows:

def Int2.add : Int2 → Int2 → Int2
| Int2.zero, a => a
| Int2.one, Int2.zero => Int2.one
| Int2.one, Int2.one => Int2.zero

To instantiate AddGroup, we need to provide the following constants and prop-
erties:

add : α→ α→ α

zero : α

neg : α→ α

add_assoc : ∀a b c, add (add a b) c = add a (add b c)
zero_add : ∀a, add zero a = a
add_zero : ∀a, add a zero = a

add_left_neg : ∀a, add (neg a) a = zero

The constants AddGroup.add, AddGroup.zero, and AddGroup.neg correspond to
the binary operator, the identity element, and the inverse. The properties Add-
Group.add_assoc, AddGroup.zero_add, and AddGroup.add_left_neg correspond
to the three group axioms. For technical reasons, we must also prove the redun-
dant property AddGroup.add_zero.

The type Int2 can be registered as a group as follows:

instance Int2.AddGroup : AddGroup Int2 :=
{ add := Int2.add

zero := Int2.zero
neg := fun a 7→ a
add_assoc :=

by
intro a b c
cases a <;>

cases b <;>
cases c <;>
rfl

zero_add :=
by

intro a
cases a <;>

rfl
add_zero :=

by
intro a
cases a <;>

rfl
add_left_neg :=

by
intro a
cases a <;>
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rfl }

Thanks to this instance, we can now write 0, +, and -:

#reduce Int2.one + 0 - 0 - Int2.one

The algebraic hierarchy contains further type classes with one binary operator.
The main ones are listed below:

Type class Properties Examples

Semigroup associativity of * R, Q, Z, N
Monoid Semigroup with unit 1 R, Q, Z, N
LeftCancelSemigroup Semigroup with c * a = c * b→ a = b
RightCancelSemigroup Semigroup with a * c = b * c→ a = b
Group Monoid with inverse −1

For most of these structures, commutative versions (where a · b = b · a for all
elements a, b) are available: CommSemigroup, CommMonoid, CommGroup. They also
all have additive counterparts prefixed with Add:

Type class Properties Examples

AddSemigroup associativity of+ R, Q, Z, N
AddMonoid AddSemigroup with unit 0 R, Q, Z, N
AddLeftCancelSemigroup AddSemigroup with R, Q, Z, N

c + a = c + b→ a = b
AddRightCancelSemigroup AddSemigroup with R, Q, Z, N

a + c = b + c→ a = b
AddGroup AddMonoid with inverse - R, Q, Z

Although the additive type classes are merely copies of their multiplicative
counterparts, they are crucial when constructing algebraic structures with more
than one binary operator such as rings and fields. To avoid duplicating all theo-
rems and definitions based on the multiplicative type classes, the copying process
is automated via metaprograms.

An example instance of AddMonoid is the type List α with the empty list [] as
zero and the append operator ++ as addition:

instance List.AddMonoid {α : Type} : AddMonoid (List α) :=
{ zero := []

add := fun xs ys 7→ xs ++ ys
add_assoc := List.append_assoc
zero_add := List.nil_append
add_zero := List.append_nil }

We could continue and register List α with [] and ++ as an AddLeftCancelSemi-
group and an AddRightCancelSemigroup.

The graph below illustrates the relationships between some of these type
classes. An arrow from X to Y means “X inherits all constants and properties
from Y.”
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Semigroup Monoid Group

CommSemigroup CommMonoid CommGroup

AddSemigroup AddMonoid AddGroup

AddCommSemigroup AddCommMonoid AddCommGroup

13.2 Type Classes over Two Binary Operators

The additive and multiplicative structures are amalgamated to form more complex
structures over two binary operators. One of these is field. A field F is defined by
the following properties:

F forms a commutative group under an operator +, called addition, with iden-
tity element 0.
F\{0} forms a commutative group under an operator ∗, called multiplication.
Multiplication distributes over addition—i.e., a ∗ (b + c) = a ∗ b + a ∗ c for all
a, b, c ∈ F.

By running #print Field, we can display all constants and properties required
by Field. Again, the type class includes some redundant properties due to its
construction.

We will now show that Int2 is a field by instantiating the Field type class with
it. First, we must define multiplication on Int2:

def Int2.mul : Int2 → Int2 → Int2
| Int2.one, a => a
| Int2.zero, _ => Int2.zero

To declare Int2 as a field, we can reuse the instance Int2.AddGroup that we de-
fined above using the syntax Int2.AddGroup with. We can prove the remaining
properties as follows:

instance Int2.Field : Field Int2 :=
{ Int2.AddGroup with

one := Int2.one
mul := Int2.mul
inv := fun a 7→ a
add_comm :=

by
intro a b
cases a <;>

cases b <;>
rfl

exists_pair_ne :=
by

apply Exists.intro Int2.zero
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apply Exists.intro Int2.one
simp

zero_mul :=
by

intro a
rfl

mul_zero :=
by

intro a
cases a <;>

rfl
one_mul :=

by
intro a
rfl

mul_one :=
by

intro a
cases a <;>

rfl
mul_inv_cancel :=

by
intro a h
cases a
{ apply False.elim

apply h
rfl }

{ rfl }
inv_zero := by rfl
mul_assoc :=

by
intro a b c
cases a <;>

cases b <;>
cases c <;>
rfl

mul_comm :=
by

intro a b
cases a <;>

cases b <;>
rfl

left_distrib :=
by

intro a b c
cases a <;>

cases b <;>
rfl

right_distrib :=
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by
intro a b c
cases a <;>

cases b <;>
cases c <;>
rfl }

With this declaration in place, we can now use the notations 1, *, /, and more:

#reduce (1 : Int2) * 0 / (0 - 1)

This command prints Int2.zero. The type annotation : Int2 is necessary here
to tell Lean that we want to calculate in Int2 and not in N, the default. We can
even use arbitrary numerals in Int2. For example, the numeral 3 is interpreted as
1 + 1 + 1, which is the same as 1 in Int2:

#reduce (3 : Int2)

This command prints Int2.one.
Besides Field, there are many more type classes for structures with two binary

operators. These are the main ones:

Type class Properties Examples

Semiring Monoid and AddCommMonoid with distributivity R, Q, Z, N
CommSemiring Semiring with commutativity of * R, Q, Z, N
Ring Monoid and AddCommGroup with distributivity R, Q, Z
CommRing Ring with commutativity of * R, Q, Z
DivisionRing Ring with multiplicative inverse R, Q
Field DivisionRing with commutativity of * R, Q

The graph below illustrates the relationships between these type classes.

Semiring Ring DivisionRing

CommSemiring CommRing Field

The hierarchy between Ring and Field is more complex than depicted and in-
cludes type classes for domains, integral domains, and Euclidean rings.

The Field type class requires the property ∀a, a / 0 = 0. This is simply a con-
vention to make division a total function. Mathematicians would regard division
as a partial function. There is no harm in totalizing a partial function in this way.

Once we have instantiated the type classes with types of interest, we can use
the ring tactic to normalize terms containing operators on those types. For ex-
ample:

theorem ring_example (a b : Int2) :
(a + b) ^ 3 = a ^ 3 + 3 * a ^ 2 * b + 3 * a * b ^ 2 + b ^ 3 :=
by ring

This tactic is available for any type that is declared as a field or more generally as
a commutative semiring.
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13.3 Coercions

When combining numbers from N, Z, Q, and R in the same theorems, we may want
to cast from one type to another. For example, given a natural number, we may
need to convert it to an integer. Consider the following theorem and notice the
type of the arguments of multiplication:

theorem neg_mul_neg_Nat (n : N) (z : Z) :
(- z) * (- n) = z * n :=
by simp

Surprisingly, this statement does not lead to an error, although negation - n is not
defined on n : N, and multiplication of z : Z and n : N is not defined.

The diagnosis command #check neg_mul_neg_Nat tells us what happened:

neg_mul_neg_Nat : ∀ (n : N) (z : Z), -z * -↑n = z * ↑n

Lean has a mechanism to introduce coercions, denoted by ↑ or coe, when neces-
sary. This coercion operator can be set up to provide implicit conversions between
arbitrary types. Many coercions are already in place, including these:

coe : N→ α casts N to another semiring α;
coe : Z→ α casts Z to another ring α;
coe : Q→ α casts Q to another division ring α.

We can provide type annotations to document our intentions or help Lean
figure out where to place the coercions, as in the following example:

theorem neg_Nat_mul_neg (n : N) (z : Z) :
(- n : Z) * (- z) = n * z :=
by simp

In proofs involving coercions, the norm_cast tactic can be convenient. It helps
with goals such as ⊢ m n : N, h : ↑m = ↑n ⊢ m = n in

theorem Eq_coe_int_imp_Eq_Nat (m n : N)
(h : (m : Z) = (n : Z)) :

m = n :=
by norm_cast at h

Similarly, it helps with the goal ⊢ m n : N ⊢ ↑m + ↑n = ↑(m + n) in

theorem Nat_coe_Int_add_eq_add_Nat_coe_Int (m n : N) :
(m : Z) + (n : Z) = ((m + n : N) : Z) :=
by norm_cast

The norm_cast tactic relies on theorems such as the following:

Nat.cast_add : ∀a b : N, ↑(a + b) = ↑a + ↑b
Int.cast_add : ∀a b : Z, ↑(a + b) = ↑a + ↑b
Rat.cast_add : ∀a b : Q, ↑(a + b) = ↑a + ↑b

13.4 Normalization Tactics

The algebraic tactic ring and the coercion tactic norm_castwork by normalization:
They rewrite expressions in the hope that they become syntactically equal, at
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which point equality is trivial to prove. Like rw and simp, they produce a subgoal
when they make some progress but do not fully prove the goal.

The optional position argument is as for the rewriting tactics (Section 3.5).

ring

ring
[
at position

]
The ring tactic proves equalities over commutative rings and semirings (such as
N, Z, Q, and R) by normalizing expressions and syntactically comparing the result.

norm_cast

norm_cast
[
at position

]
The norm_cast tactic moves coercions towards the inside of expressions, as a form
of simplification.

13.5 Lists, Multisets, and Finite Sets

We have seen many examples of how lists can be used in previous chapters. But
when making a new definition or stating a new theorem, we should also reflect on
alternatives such as multisets and finite sets.

Consider the following definition, based on the binary trees we introduced in
Section 5.8:

def List.elems : BTree N → List N
| BTree.empty => []
| BTree.node a l r => a :: List.elems l ++ List.elems r

This function returns a list of all the elements occurring in the tree. It traverses
the tree depth first, from left to right. But for some applications, we might not
care about the order of the elements.

This is where multisets come into play. For multisets, we have{3, 2, 1, 2} =
{1, 2, 2, 3} , whereas the two lists [3, 2, 1, 2] and [1, 2, 2, 3] are different.
Multisets are defined as the quotient type over lists up to reordering. We can
redo the above definition using multisets as follows:

def Multiset.elems : BTree N → Multiset N
| BTree.empty => ∅
| BTree.node a l r =>

{a} ∪ Multiset.elems l ∪ Multiset.elems r

Using this definition, we can prove that Multiset.elems t = Multiset.elems
(mirror t), whereas List.elems t = List.elems (mirror t) does not hold in
general.

For some applications, we might want to go a step further and ignore not only
the order but also how often each element occurs in the tree, distinguishing only
between occurrence and nonoccurrence. This is where finite sets, or finsets, come
into play. On finsets, we have {3, 2, 1, 2} = {1, 2, 3}. Finsets are defined as
the subtype of multisets that do not contain any repeated elements. (Another
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possible definition would have been as the subtype of sets that are finite.) We
can redo the definition above using finsets as follows:

def Finset.elems : BTree N → Finset N
| BTree.empty => ∅
| BTree.node a l r => {a} ∪ Finset.elems l ∪ Finset.elems r

For lists and multisets, Lean offers sum and product operators to add or multiply
all of the elements. Below, the first two commands print 9, and the last two print
24:

#eval List.sum [2, 3, 4]
#eval Multiset.sum ({2, 3, 4} : Multiset N)

#eval List.prod [2, 3, 4]
#eval Multiset.prod ({2, 3, 4} : Multiset N)

These operators require the type of the elements to be declared as an instance
of AddMonoid for sum or of Monoid for product. The Multiset and Finset versions
also require an instance declaration for AddCommMonoid or CommMonoid because
the result cannot depend on the order of adding or multiplying the elements.

13.6 Order Type Classes

Many of the structures introduced above can be ordered. For example, the familiar
order on the natural numbers can be defined as

inductive Nat.le : N → N → Prop
| refl : ∀a : N, Nat.le a a
| step : ∀a b : N, Nat.le a b → Nat.le a (b + 1)

This is an example of a linear order. A linear order (or total order) is a binary
relation ≤ such that for all a, b, and c, the following properties hold:

reflexivity: a ≤ a;
transitivity: if a ≤ b and b ≤ c, then a ≤ c;
antisymmetry: if a ≤ b and b ≤ a, then a = b;
totality: a ≤ b or b ≤ a.

If a relation has the first three properties, it is a partial order. An example is the
subset relation ⊆ on sets, finite sets, or multisets. If a relation has the first two
properties, it is a preorder. An example is comparing lists by their lengths.

In Lean, there are type classes for the different kinds of orders: LinearOrder,
PartialOrder, and Preorder. The Preorder class has one constant and two prop-
erties:

le : α→ α→ Prop
le_refl : ∀a : α, le a a

le_trans : ∀a b c : α, le a b→ le b c→ le a c

The PartialOrder class has the additional property

le_antisymm : ∀a b : α, le a b→ le b a→ a = b
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and LinearOrder has the additional property

le_total : ∀a b : α, le a b ∨ le b a

We can declare the preorder on List α that compares lists by their lengths as
follows:

instance List.length.Preorder {α : Type} : Preorder (List α) :=
{ le :=

fun xs ys 7→ List.length xs ≤ List.length ys
lt :=

fun xs ys 7→ List.length xs < List.length ys
le_refl :=

by
intro xs
apply Nat.le_refl

le_trans :=
by

intro xs ys zs
exact Nat.le_trans

lt_iff_le_not_le :=
by

intro a b
simp [LT.lt, LE.le]
intro hlt
linarith }

This type class instance gives access to the infix syntax≤ and to the corresponding
relations ≥, <, and >:

theorem list.length.Preorder_example :
[1] > [] :=
by decide

The proof features a new tactic: decide. It relies on type class inference to prove
trivial decidable goals.

Complete lattices, which we discussed in Chapter 11, are formalized as another
type class, CompleteLattice, which extends PartialOrder. In the following dia-
gram, an arrow from X to Y means “X inherits all constants and properties from Y.”

Preorder PartialOrder LinearOrder

CompleteLattice

Finally, Lean provides type classes that combine orders and algebraic struc-
tures: OrderedCancelCommMonoid, OrderedCommGroup, OrderedSemiring, Linear-
OrderedSemiring, LinearOrderedCommRing, LinearOrderedField. All these
mathematical structures relate ≤ and < with the constants 0, 1, +, and * by mono-
tonicity rules (e.g., a ≤ b→ c ≤ d→ a + c ≤ b + d) and cancellation rules (e.g., c +
a ≤ c + b→ a ≤ b).
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13.7 Decision Tactic

decide

The decide tactic can be used to prove true decidable goals. Decidability is deter-
mined by checking membership of the Decidable type class. Unlike rfl, decide
is not limited to proving equalities.

Notation

↑ coercion operator coe

Tactics

decide proves decidable truths (e.g., a true executable expression)
norm_cast normalizes coercions
ring normalizes ring expressions
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Rational and Real Numbers

We have seen how the natural numbers N can be defined as an inductive type and
how the integers Z can be defined as a quotient over N × N. In this chapter, we
review the construction of the rational numbers Q and the real numbers R. The
tools used for these constructions are inductive types, subtypes, and quotients.

The following procedure can be used to construct types with specific proper-
ties:

1. Create a new type that is large enough to represent all elements, but not
necessarily in a unique manner.

2. Take the quotient of this representation, equating elements as needed.
3. Define operators on the quotient type by lifting functions from the base type,

and prove that they are compatible with the quotient relation.
We used this approach to construct the type Z in Section 12.5.1. It can be used for
Q and R as well.

14.1 Rational Numbers

A rational number is a number that can be expressed as a fraction n/d of integers
n and d, where d ̸= 0:

structure Fraction where
num : Z
denom : Z
denom_Neq_zero : denom ̸= 0

The number n is called the numerator, and the number d is called the denominator.
The representation of a rational number as a fraction is not unique. For example,
the rationals 1/2, 2/4, and −1/−2 are all equal. This representation as a fraction
will serve as the base type of which we will take the quotient.

Two fractions n1/d1 and n2/d2 represent the same rational number if the ratio
between numerator and denominator are the same: n1 ∗ d2 = n2 ∗ d1. To construct
the quotient over the type Fraction with respect to this relation, we show that
the relation is an equivalence relation. This is achieved by declaring Fraction an
instance of the Setoid type class:

namespace Fraction

187
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instance Setoid : Setoid Fraction :=
{ r :=

fun a b : Fraction 7→ num a * denom b = num b * denom a
iseqv :=

{ refl := by aesop
symm := by aesop
trans :=

by
intro a b c heq_ab heq_bc
apply Int.eq_of_mul_eq_mul_right (denom_Neq_zero b)
calc

num a * denom c * denom b
= num a * denom b * denom c :=

by ac_rfl
_ = num b * denom a * denom c :=

by rw [heq_ab]
_ = num b * denom c * denom a :=

by ac_rfl
_ = num c * denom b * denom a :=

by rw [heq_bc]
_ = num c * denom a * denom b :=

by ac_rfl
} }

theorem Setoid_Iff (a b : Fraction) :
a ≈ b ↔ num a * denom b = num b * denom a :=
by rfl

end Fraction

Then we can define the type of rationals as the quotient over this setoid:

def Rat : Type :=
Quotient Fraction.Setoid

To define zero, one, addition, multiplication, and other operations, we first define
them on the Fraction type. To add two fractions, we convert them to a common
denominator and add the numerators. The easiest common denominator to use
is simply the product of the two denominators:

instance Add : Add Fraction :=
{ add := fun a b : Fraction 7→

{ num := num a * denom b + num b * denom a
denom := denom a * denom b
denom_Neq_zero := by simp [denom_Neq_zero] } }

We register these operations as instances of the syntactic type classes such as Add
to be able to use convenient notation such as + on Fraction. Similarly, we define
zero as 0 := 0/1, one as 1 := 1/1, and multiplication as the pairwise multiplication
of numerators and denominators.

To lift these operations to the type of rational numbers, Rat, we must prove
them compatible with ≈:
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namespace Fraction

@[simp] theorem add_num (a b : Fraction) :
num (a + b) = num a * denom b + num b * denom a :=
by rfl

@[simp] theorem add_denom (a b : Fraction) :
denom (a + b) = denom a * denom b :=
by rfl

theorem Setoid_add {a a’ b b’ : Fraction} (ha : a ≈ a’)
(hb : b ≈ b’) :

a + b ≈ a’ + b’ :=
by

simp [Setoid_Iff, add_denom, add_num] at *
calc

(num a * denom b + num b * denom a)
* (denom a’ * denom b’)

= num a * denom a’ * denom b * denom b’
+ num b * denom b’ * denom a * denom a’ :=
by

simp [add_mul, mul_add]
ac_rfl

_ = num a’ * denom a * denom b * denom b’
+ num b’ * denom b * denom a * denom a’ :=

by simp [*]
_ = (num a’ * denom b’ + num b’ * denom a’)

* (denom a * denom b) :=
by

simp [add_mul, mul_add]
ac_rfl

end Fraction

Then we can use Quotient.lift(2) to define the Rat operations, and we can in-
stantiate the relevant syntactic type classes, such as

namespace Rat

instance Add : Add Rat :=
{ add := Quotient.lift2 (fun a b : Fraction 7→ mk (a + b))

(by
intro a b a’ b’ ha hb
apply Quotient.sound
exact Fraction.Setoid_add ha hb) }

end Rat

From here, we can proceed and prove all the properties needed to make Rat an
instance of Field.
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Alternative Definitions of the Rational Numbers In mathlib, another approach
is used to define the rationals. The type Rat is defined as a subtype of Fraction,
with the requirement that the denominator is positive and that the numerator
and the denominator are coprime (i.e., they have no common divisors except 1
and −1):

def Rat.IsCanonical (a : Fraction) : Prop :=
Fraction.denom a > 0
∧ Nat.coprime (Int.natAbs (Fraction.num a))

(Int.natAbs (Fraction.denom a))

def Rat : Type :=
{a : Fraction // Rat.IsCanonical a}

This is an instance of the general strategy described in Section 12.5.3. With this
approach, no quotient is required, computation is more efficient, and more prop-
erties are syntactic equalities up to computation. A drawback is that function
definitions become more complicated due to the need to normalize fractions.

14.2 Real Numbers

Some sequences of rational numbers seem to converge because the numbers in
the sequence get closer and closer to each other and yet do not converge to a
rational number. The sequence

a0 = 1
a1 = 1.4
a2 = 1.41
a3 = 1.414
a4 = 1.4142

...

where an is the largest number with n digits after the decimal point such that
a2

n < 2, is such a sequence. It seems to converge because each an is at most 10−n

away from any of the following numbers, but the limit is
√

2 /∈ Q. In that sense, the
rational numbers are incomplete, and the reals are their completion. To construct
the reals, we need to fill in the gaps that are revealed by these sequences that
seem to converge but do not.

Cauchy sequences capture the notion of a sequence that seems to converge.
A sequence a0,a1, . . . is Cauchy if for any ε > 0, there exists an N ∈ N such that for
all m ≥ N, we have |aN − am| < ε. In other words, no matter how small we choose
ε, we can always find a point in the sequence from which all following numbers
deviate by less than ε.

We formalize sequences of rational numbers as functions f : N→ Q and de-
note the absolute value | | by abs. This yields the following Lean definition of
Cauchy sequences:

def IsCauchySeq (f : N → Q) : Prop :=
∀ε > 0, ∃N, ∀m ≥ N, abs (f N - f m) < ε
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Not every sequence is a Cauchy sequence:

theorem id_Not_CauchySeq :
¬ IsCauchySeq (fun n : N 7→ (n : Q)) :=
by

rw [IsCauchySeq]
intro h
cases h 1 zero_lt_one with
| intro i hi =>

have hi_succi :=
hi (i + 1) (by simp)

simp [←sub_sub] at hi_succi

We define a type of Cauchy sequences as a subtype:

def CauchySeq : Type :=
{f : N → Q // IsCauchySeq f}

It will be convenient to have an auxiliary function that extracts the actual se-
quence from a CauchySeq:

def seqOf (f : CauchySeq) : N → Q :=
Subtype.val f

The basic idea of the construction is to represent the real numbers by Cauchy
sequences. Each Cauchy sequence represents the real number that is its limit; for
example, the sequence an = 1/n represents the real number 0, and the sequence
1, 1.4, 1.41, . . . represents the real number

√
2.

Two different Cauchy sequences can represent the same real number; for ex-
ample, the sequence an = 1/n and the constant sequence bn = 0 both represent
0. Therefore, we need to take the quotient over sequences representing the same
real number. Two sequences represent the same real number when their differ-
ence converges to zero:

namespace CauchySeq

instance Setoid : Setoid CauchySeq :=
{ r :=

fun f g : CauchySeq 7→
∀ε > 0, ∃N, ∀m ≥ N, abs (seqOf f m - seqOf g m) < ε

iseqv :=
{ refl :=

by
intro f ε hε
apply Exists.intro 0
aesop

symm :=
by

intro f g hfg ε hε
cases hfg ε hε with
| intro N hN =>

apply Exists.intro N
intro m hm
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rw [abs_sub_comm]
apply hN m hm

trans :=
by

intro f g h hfg hgh ε hε
cases hfg (ε / 2) (half_pos hε) with
| intro N1 hN1 =>

cases hgh (ε / 2) (half_pos hε) with
| intro N2 hN2 =>

apply Exists.intro (max N1 N2)
intro m hm
calc

abs (seqOf f m - seqOf h m)
≤ abs (seqOf f m - seqOf g m)

+ abs (seqOf g m - seqOf h m) :=
by apply abs_sub_le

_ < ε / 2 + ε / 2 :=
add_lt_add (hN1 m (le_of_max_le_left hm))

(hN2 m (le_of_max_le_right hm))
_ = ε :=

by simp } }

theorem Setoid_iff (f g : CauchySeq) :
f ≈ g ↔
∀ε > 0, ∃N, ∀m ≥ N, abs (seqOf f m - seqOf g m) < ε :=
by rfl

end CauchySeq

Using this Setoid instance, we can now define the real numbers:

def Real : Type :=
Quotient CauchySeq.Setoid

Like for the rational numbers, we need to define zero, one, addition, multipli-
cation, and other operators. We define them on CauchySeq first and lift them to
Real afterwards. For the constants 0 and 1, we can define them simply as constant
sequences. Any constant sequence is a Cauchy sequence:

namespace CauchySeq

def const (q : Q) : CauchySeq :=
Subtype.mk (fun _ : N 7→ q)

(by
rw [IsCauchySeq]
intro ε hε
aesop)

We can declare Real instances of the syntactic type classes Zero and One:

instance Zero : Zero Real :=
{ zero := JCauchySeq.const 0K }
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instance One : One Real :=
{ one := JCauchySeq.const 1K }

Defining addition of real numbers requires a little more effort. We define addition
on Cauchy sequences by adding the elements of the sequence pairwise:

instance Add : Add CauchySeq :=
{ add := fun f g : CauchySeq 7→

Subtype.mk (fun n : N 7→ seqOf f n + seqOf g n) sorry }

This definition requires a proof that the result is a Cauchy sequence, given that
f and g are Cauchy sequences. It is omitted.

Next, we need to show that this addition is compatible with ≈:

theorem Setoid_add {f f’ g g’ : CauchySeq} (hf : f ≈ f’)
(hg : g ≈ g’) :

f + g ≈ f’ + g’ :=
by

intro ε0 hε0
simp [Setoid_iff]
cases hf (ε0 / 2) (half_pos hε0) with
| intro Nf hNf =>

cases hg (ε0 / 2) (half_pos hε0) with
| intro Ng hNg =>

apply Exists.intro (max Nf Ng)
intro m hm
calc

abs (seqOf (f + g) m - seqOf (f’ + g’) m)
= abs ((seqOf f m + seqOf g m)

- (seqOf f’ m + seqOf g’ m)) :=
by rfl

_ = abs ((seqOf f m - seqOf f’ m)
+ (seqOf g m - seqOf g’ m)) :=

by
have arg_eq :

seqOf f m + seqOf g m
- (seqOf f’ m + seqOf g’ m) =

seqOf f m - seqOf f’ m
+ (seqOf g m - seqOf g’ m) :=

by linarith
rw [arg_eq]

_ ≤ abs (seqOf f m - seqOf f’ m)
+ abs (seqOf g m - seqOf g’ m) :=

by apply abs_add
_ < ε0 / 2 + ε0 / 2 :=

add_lt_add (hNf m (le_of_max_le_left hm))
(hNg m (le_of_max_le_right hm))

_ = ε0 :=
by simp

end CauchySeq
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To prove that f + g ≈ f’ + g’, we are given an ε0 > 0 and must show that there
exists a number N such that

∀m, m ≥ N→ abs (seqOf (f + g) m - seqOf (f’ + g’) m) < ε0

To obtain N, we use f ≈ f’ and g ≈ g’. The equivalence f ≈ f’ gives us for any ε >
0 a number Nf such that abs (seqOf f m - seqOf f’ m) < ε for all m ≥ Nf. The fact
g ≈ g’ gives us a number Ng with a similar property. For the calculations to work
out in the end, we take the numbers Nf and Ng for ε := ε0 / 2. Then we choose N
to be the maximum of Nf and Ng, so that we get the inequalities for any m ≥ N. The
calc block at the end of the proof establishes that, for all m ≥ N,

abs (seqOf (f + g) m - seqOf (f’ + g’) m) < ε0

Having shown that addition on Cauchy sequences is compatible with ≈, we
can define addition on Real:

namespace Real

instance Add : Add Real :=
{ add := Quotient.lift2 (fun a b : CauchySeq 7→ Ja + bK)

(by
intro a b a’ b’ ha hb
apply Quotient.sound
exact CauchySeq.Setoid_add ha hb) }

end Real

We could continue like this with multiplication and other operators. In sum-
mary, real numbers are defined as a quotient over Cauchy sequences, which are
in turn defined as a subtype of N→ Q.

Alternative Definitions of the Real Numbers In mathlib, the construction of the
real numbers is essentially as described above. Some definitions are stated in a
more general fashion to allow construction of other algebraic structures, such as
the p-adic numbers [18].

Alternatively, the real numbers can be defined using Dedekind cuts. A num-
ber r : R is then represented as the set of numbers x : Q such that x < r. An-
other alternative, which does not depend on Q, is to define R using binary se-
quences N→ Bool. The elements of the sequence represent the number’s digits.
This works particularly well if we only need the real interval [0, 1].

14.3 Final Exhortation

We have now reached the end of this guide. You now know fundamental theory
and techniques in interactive theorem proving as well as some application areas.
Although we used Lean, your skills should help you with other systems, especially
those based on simple or dependent type theory. You should also be able to read
many if not most scientific papers in the area.

Even if you do not choose to pursue a career in theorem proving, the authors
hope you will bring proof assistants with you and use them when it makes sense,
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either because of their high trustworthiness or because of their convenience for
keeping track of complex proof goals.

If you continue using Lean, the natural next step would be to familiarize your-
self with mathlib and its documentation. If you use Lean outside a class context,
you will often find yourself looking up definitions and theorems. The #find com-
mand will surely be useful.1 And the Lean Zulip chat2 is the meeting place of Lean
users.

14.4 Summary of New Lean Constructs

Command

#find looks up a definition or theorem by pattern matching

1https://leanprover-community.github.io/mathlib_docs/commands.html#find
2https://leanprover.zulipchat.com/

https://leanprover-community.github.io/mathlib_docs/commands.html##find
https://leanprover.zulipchat.com/
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